Supporting Information for

Two-Dimensional Solid-Phase Crystallization toward Centimeter-Scale Monocrystalline Layered MoTe₂ via Two-Step Annealing

Chih-Pin Lin, ^a Hao-Hua Hsu, ^a Jyun-Hong Huang, ^a Yu-Wei Kang, ^a Chien-Ting Wu, ^b Yao-Jen Lee, ^b Chun-Cheng Cheng, ^c Yann-Wen Lan, ^d Wen-Hao Chang, ^e

Lain-Jong Li,^f and Tuo-Hung Hou^{*a} ^aDepartment of Electronics Engineering and Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan ^bTaiwan Semiconductor Research Institute, Hsinchu 300, Taiwan ^cAdvanced Technology Research Center, AU Optronics Corporation, Hsinchu 300, Taiwan

^dDepartment of Physics, National Taiwan Normal University, Taipei 116, Taiwan

^eDepartment of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan

^fDepartment of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong

Kong SAR, China

*Electronic mail: thhou@mail.nctu.edu.tw

S1. 2H-MoTe₂ formation by Using Different Sputtering Time of MoTe₂

Fig. S1 Optical image of MoTe₂ with various sputtering time at $T_a = 700$ °C for 5 min in RTA. The thickness of MoTe₂ film is easily controlled by tuning the sputtering time,^{1,2} which can be seen also from (a) the apparent color contrast in the optical images and (b) AFM results of as-sputtered MoTe₂. The sputtering time of 40s is selected in our study to obtain a thinner thickness.

S2. Temperature-Dependent 2H-MoTe₂ Nucleation in RTA

Temperature (°C)	500	650	700	750	800	850	900
Phase	α	1T'	1T'/2H	1T'/2H	1T'/2H	1T'/2H	1T'

Table S2 Phase of MoTe₂ as a function of T_a in RTA with $t_a=1$ min.

Fig. S2 (a-c) Raman spectra of α -, 2H- and 1T'-phase at various T_a in RTA. (d) Annealing temperature profiles of RTA and FA. The r_{ramp} and t_{cool} of RTA (FA) are 55 °C/s (~1 °C/s) and 20s (~2 hr), respectively. Both t_a and T_a are 5 min and 850 °C. (e) Optical image of hexagonal 2H MoTe₂ annealed at 850 °C for 5 min in FA and RTA. Excessive nucleation could be observed in FA-annealed samples due to the slow heating and cooling processes.

S3. Effect of *r_{ramp}* and *t_{cool}* on the Synthesis of 2H-MoTe₂ in RTA

Fig. S3 Effect of r_{ramp} on (a) 2H-phase nucleation and (b) domain morphology. (c) Effect of t_{cool} on 2H-phase nucleation. In the range we chose, both parameters in RTA show insignificant effects.

S4. Effect of *t_a* on the Domain Morphology

Fig. S4 Time evolution (t_a = 1 to 5 min) of domain (a-e) morphology and (f) size of 2H-MoTe₂. The 2H-MoTe₂ domain shows a shape transition from round to hexagonal as t_a increases, and the grain size monotonously increases over time.

S5. Crystallographic Orientation of Hexagonal 2H-MoTe₂ Domain

Fig. S5 (a-b) HRTEM image at the boundary of hexagonal 2H-MoTe₂ domain and (c-d) its corresponding SAED patterns. Most edge regions show an angle of 120° or 240°, an integer multiple of the angle difference between two adjacent ZZ planes.^{3,4} Therefore, we conclude that the hexagonal 2H domain is dominated by the ZZ edges.

S6. Crystallographic Orientation Measured by EBSD

Fig. S6 EBSD mapping of two hexagonal 2H-MoTe₂, confirming the crystallographic orientation and monocrystallinity of 2H-MoTe₂ domains. All three IPF maps show uniform color distributions, indicating the monocrystalline nature. The color maps of IPF-X and IPF-Y reveal that the crystallographic orientations of hexagonal 2H-MoTe₂ are roughly aligned along with the $\langle \bar{1}2\bar{1}0 \rangle$ - and $\langle 01\bar{1}0 \rangle$ -direction corresponding to the x- and y-axis, respectively. The edge is dominated by the ZZ orientation. The IPF-Z also confirmed that the out-of-plane orientation of 2H-MoTe₂ is parallel to the substrate in a 2D layered structure.

S7. 2H-MoTe₂ Nucleation Sites after RTA treatment

Fig. S7 Optical image showing the distribution of 2H-MoTe₂ nucleation sites in α -MoTe₂ on a SiO₂ substrate (~1 cm²). The RTA condition was 850 °C for 5 min. r_n is estimated to be 1.2 min⁻¹cm⁻².

S8. Estimation of Final Grain Size by JMAK Equation

According to ref. 5, the crystalline fraction (f) of 2D material as a function of time and temperature could be estimated using the Johnson-Mehl-Avrami-Kolmogorov equation:

$$f=1-exp[-Kt^n],$$

where $K = \frac{\pi}{3} r_n v_g^2$, n= 3 in the 2D case. The crystallization time τ is defined by $K\tau \sim 1$, i.e. $\tau \sim \frac{1}{(r_n v_g^2)^{1/3}}$, when the fracture *f* reaches unity for a completely crystallized film. Therefore, the final grain size could be estimated as $v_g \tau \sim (v_g/r_n)^{1/3}$. From our experimental results, the mean r_n and v_g of 2H-MoTe₂ annealed by RTA are 1.2 min⁻¹cm⁻² and 0.4 µm/s at 850 °C, respectively. Thus, the final grain size under prolonged RTA treatment is approximately 2.5 mm.

S9. Shape Evolution Using Two Subsequent RTA Treatments

Fig.S8 Shape evolution characterized using two subsequent RTA annealing with t_a = 1 min and 5 min each. The first short-duration RTA produced circular 2H-MoTe₂ domains where the edge structure was dominated by S19 (slanted edges with an ~19° angle from the ZZ edge).⁶ Such edges were replaced by the ZZ edges after the long-duration RTA for 5 min, and the domain shape was transformed from circular to hexagonal.

S10. Nano-crack Formation in 2H-MoTe₂ under High-Temperature SPC

Fig. S9 (a-c) Optical image showing the surface morphology of 2H-MoTe₂ annealed by RTA, FA, and TSA. The dendrite-like nano-cracks with a radical pattern were found in 2H-MoTe₂ at high T_a regardless of the heating instrument (RTA or FA). (d) Te segregation at the boundary of 2H and 1T' phases. (e) Raman spectroscopy of vibrational modes at ~128 and 145 cm⁻¹ confirms the Te segregation.⁷ (f) Transfer characteristics (I_D-V_G) of MoTe₂ back-gated transistor with and without cracking. The device channel length/width (L/W) is 10µm/24µm. (g) Cross-sectional HRTEM image showing that the nano-crack is due to the local discontinuity of 2H-MoTe₂ (the red-dash frame region). The formation of nano-cracks could be suppressed at lower T_a . One plausible explanation of forming nano-cracks is the significant stress induced by the migration of Te clusters at high temperatures during 2H-MoTe₂ growth, which might be large enough to rupture the film. In MoS₂, a similar stress-induced nano-scratch was observed by applying force using the tip in the atomic force microscope (AFM).⁸ The nano-scratchs showed preferable breaking along the ZZ direction since the fracture strength of MoS₂ along ZZ is lower than AC. Similarly, the rupture of MoTe₂ tends to extend outward along the ZZ direction.

S11. Variation of r_n at Low T_a

Fig. S10 r_n as a function of T_a in RTA. The statistics of red and blue data are from two different experiments with the same condition. Both experiments show the trend of reduced r_n at higher T_a . By contrast, r_n at low T_a shows large discrepancies between these two experiments. The exact reason is still under investigation.

S12. Monocrystalline 2H-MoTe₂ with Different Domain Morphologies

Fig. S11 Optical image and EBSD mapping of 2H-MoTe₂ after TSA by using (a) hexagonal and (b) circular domains as seeds. The second-step FA continued enlarging monocrystalline grains outward from the seed regions.

S13. 2H-MoTe₂ Transistors with ZZ- or AC Channel Orientation

Fig. S12 Optical image of 2H-MoTe₂ transistors with ZZ and AC channel orientation in a large area.

References

- J. –H. Huang, K. –Y. Deng, P. –S. Liu, C. –T. Wu, C. –T. Chou, W. –H. Chang, Y. –J. Lee and T. –H. Hou, *Adv. Mater. Interfaces* 2017, 4, 1700157.
- J. –H. Huang, H. –H. Hsu, D. Wang, W. –T. Lin, C. –C. Cheng, Y. –J. Lee and T. H. Hou, *Sci. Rep.* 2019, 9, 8810.
- Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey,
 D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S. –S. Pei and Y.
 P. Chen, *Nat. Mater.* 2011, 10, 443-449.
- J. H. Sung, H. Heo, S. Si, Y. H. Kim, H. R. Noh, K. Song, J. Kim, C. –S. Lee, S. –Y.
 Seo, D. –H. Kim, H. K. Kim, H. W. Yeom, T. –H. Kim, S. –Y. Choi, J. S. Kim and
 M. –H. Jo, *Nat. Nanotechnol.* 2017, **12**, 1064-1070.
- X. Xu, S. Chen, S. Liu, X. Cheng, W. Xu, P. Li, Y. Wan, S. Yang, W. Gong, K. Yuan,
 P. Gao, Y. Ye and L. J. Dai, Am. Chem. Soc. 2019, 141, 2128-2134.
- T. Ma, W. Ren, X. Zhang, Z. Liu, Y. Gao, L. –C. Yin, X. –L. Ma, F. Ding and H. M Cheng, *PNAS* 2013, **110**, 20386-20391.
- 7. S. Khatun, A. Banerjee and A. J. Pal, *Nanoscale* 2019, **11**, 3591-3598.
- S. Ye, K. Xu, L. Lei, S. Hussain, F. Pang, X. Liu, Z. Zheng, W. Ji, X. Shi and R. Xu, Mater. Res. Express. 2019, 6, 025048.