SUPPLEMENTARY INFORMATION

Supramolecular Organic-Inorganic Domains integrating Fullerene-based acceptors with Polyoxometalate-bis-Pyrene Tweezers for Organic Photovoltaic applications.

Gabriele Giancane, ${ }^{\mathrm{a}, \mathrm{b}}$ Simona Bettini, ${ }^{\mathrm{b}, \mathrm{c}}$ Ludovico Valli, b, c Victoria Bracamonte, ${ }^{\mathrm{d}, \mathrm{e}}$ Mauro Carraro, ${ }^{\mathrm{f}}$ Marcella Bonchiof and Maurizio Prato ${ }^{\mathrm{g}, \mathrm{h}, \text {, }}$ *
a. Department of Cultural Heritage, University of Salento, Via D. Birago, 73100, Lecce, Italy
b. Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
c. Department of Biological and Environmental Sciences and Technologies, DISTEBA, University of Salento, Via per Arnesano, 73100 Lecce, Italy
d. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación, Córdoba, Argentina
e. CONICET, Instituto de Física Enrique Gaviola (IFEG), Córdoba, Argentina
f. CNR-ITM and Dipartimento di Scienze Chimiche, University of Padova, Padova, Italy
g. Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, Trieste I-34127, Italy
h. Center for Cooperative Research in Biomaterials (CIC biomaGUNE) Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, Donostia San Sebastián E-20014, Spain
i. Basque Foundation for Science, Ikerbasque, Bilbao E-48013, Spain
*Correspondence to prato@units.it

a)

b)

Figure 1S. Chemical structure of a) divacant Keggin-type decatungstosilicate bisfunctionalized with pyrene and b) Phenyl-C61-butyric acid methyl ester (PCBM) used to form the supramolecular adduct.

Figure 2 S. Influence of PCBM (dissolved in o-DCB, $5 \times 10^{-3} \mathrm{M}$) added 4μ at each step on a) absorption and b) fluorescence spectra of pyrPOM ($10 \mu \mathrm{M}$ in DMF) solution. c) Job's plot for pyrPOM and PCBM in DMF/oDCB at room temperature. d) Fluorimetric Stern-Volmer graph ($\lambda_{\text {ex }}=350 \mathrm{~nm} ; \lambda_{\mathrm{em}}=397 \mathrm{~nm}$).

Figure S3. Cyclic voltammograms of pyrPOM@PCBM (1:2) (pyrPOM 0.5 mM), compared with those of pyrPOM (0.5 mM) and PCBM (1 mM) in degassed DMF solution containing TBAP 0.10 M , at a scan rate of 50 $\mathrm{mV} \mathrm{s}^{-1}$. While the irreversible oxidation wave of pyrPOM@PCBM (with anodic peak potential $\mathrm{E}_{\mathrm{pa}}=+1.19 \mathrm{~V}$ vs $\mathrm{Ag} / \mathrm{Ag}^{+}$) appears as the overlap of POM-linked pyrene band ($\mathrm{E}_{\mathrm{pa}}=+1.27 \mathrm{~V} \mathrm{vs} \mathrm{Ag} / \mathrm{Ag}^{+}$) and PCBM oxidation band ($\mathrm{E}_{\mathrm{pa}}=+1.18 \mathrm{~V}$ vs $\mathrm{Ag} / \mathrm{Ag}^{+}$), the reduction waves of the two building blocks are strongly modified upon assembly of the two components: the characteristic pattern given by the three reversible reduction bands of PCBM (red dashed lines, with half-wave potentials $\mathrm{E}_{1 / 2}=-0.246 ;-0.709 ;-1.330 \mathrm{~V}$ vs. $\mathrm{Ag}^{2} / \mathrm{Ag}^{+}$) become much
less defined, being the first reduction band of PCMB shifted towards more negative potentials ($E_{1 / 2}=-0.336$ V vs $\mathrm{Ag} / \mathrm{Ag}^{+}$) and the other bands mixed with those of pyrPOM (light blue dashed lines).

Figure 4S. Langmuir curves surface pressure vs area per molecule recorded for PCBM chloroform solution $\left(10^{-3} \mathrm{M}\right)$ spread on ultrapure water subphase (black line) and for PCBM chloroform solution ($10^{-3} \mathrm{M}$) spread on subphase containing pyrPOM solution $\left(10^{-6} \mathrm{M}\right)$. An evident shift towards higher area per molecule values is observed when pyrPOM is dissolved in the subphase.

Figure 5 S. Squared points represent the optical functions Δ and ψ of PCBM LS film (8 runs), continuous lines are the simulated curves obtained using two Lorentz oscillators as model. It was estimated that the thickness of 8 PCBM LS runs is $48.1 \pm 6.3 \mathrm{~nm}$.

Figure 6S. Squared points represent the optical functions Δ and ψ of pyrPOM@PCBM LS film (8 runs), continuous lines are the simulated curves obtained using two Lorentz oscillators and a Drude equation as model. It was estimated that the thickness of 8 PCBM LS runs is $59.7 \pm 3.7 \mathrm{~nm}$

In order to evaluate the molar ratio between pyrPOM and PCBM, two different EMAs (Effective Medium Approximations) have been used:

Maxwell-Garnett's approximation: $\varepsilon_{e f f}=\varepsilon_{m} \frac{2\left(1-\delta_{i}\right) \varepsilon_{m}+\left(1+2 \delta_{i}\right) \varepsilon_{i}}{\left(2+\delta_{i}\right) \varepsilon_{m}+\left(1-\delta_{i}\right) \varepsilon_{i}}$

Parameter	Best fit	+/-	unit
thickness	67,1	5,4	nm
fraction guest	0,29	0,02	ratio
RMSE	3,623		

$\mathrm{PCBM}: \mathrm{POM}=2,4: 1$

$$
\delta_{P O M} \frac{\varepsilon_{P O M}-\varepsilon_{e f f}}{\varepsilon_{P O M}+(d-1) \varepsilon_{e f f}}+\delta_{P C B M} \frac{\varepsilon_{P C M B}-\varepsilon_{e f f}}{\varepsilon_{P C B M}+(d-1) \varepsilon_{e f f}}=0
$$

Bruggeman's approximation:

Parameter	Best fit	$+/-$	unit
thickness	70,4	4,1	nm
fraction guest	0,32	0,02	ratio
RMSE	2,985		

PCBM: $\mathrm{POM}=2,1: 1$

Figure 7S: PFM amplitude a) and phase b) of two LS runs of pyrPOM@PCBM film.

