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I. ELASTIC STABILITY

To determine the elastic stability for each KNbO3 (KNO) polymorph, we have performed

density-functional theory (DFT) calculations (with the PBEsol xc functional) to obtain their

elastic stiffness constants, Cij (as tabulated in Table S3) using the finite difference approach as

implemented in the VASP code.

According to the proposed necessary and sufficient elastic stability conditions for each crystal

systems [1], using our calculated Cij values, we find that they all satisfy the Born stability criteria

and note that the newly discovered monoclinic phase is metastable for KNO nano-materials.

For rhombohedral symmetry crystals, the elastic stability criteria is defined as follow [1],

C11 > |C12|, C44 > 0, C2
13 <

1

2
C33(C11 + C12), C

2
14 <

1

2
C44(C11 − C12) ≡ C44C66 . (1)

For orthorhombic symmetry crystals, the elastic stability criteria is defined as follow [1],

C11 > 0, C44 > 0, C55 > 0, C66 > 0, C11C22 > C2
12 , (2)

C11C22C33 + 2C12C13C23 − C11C
2
23 − C22C

2
13 − C33C

2
12 > 0 . (3)

For tetragonal symmetry crystals, the elastic stability criteria is defined as follow [1],

C11 > |C12|, C44 > 0, C66 > 0, 2C2
13 < C33(C11 + C12) . (4)

For monoclinic symmetry crystals, the elastic stability criteria is defined as follow [2],

C11 > 0, C22 > 0, C33 > 0, C44 > 0, C55 > 0, C66 > 0 , (5)

C11 + C22 + C33 + 2(C12 + C13 + C23) > 0 , (6)
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C33C55 − C2
35 > 0, C44C66 − C2

46 > 0, C22 + C33 − 2C23 > 0 , (7)

[C22(C33C55 − C2
35 + 2C23C25C35 − C2

23C55 − C2
25C33] > 0 , (8)

2[C15C25(C33C12 − C13C23) + C15C35(C22C13 − C12C23) + C25C35(C11C33 − C12C13)]

− [C2
15(C22C33 − C2

23) + C2
25(C11C33 − C2

13) + C2
35(C11C22 − C2

12)] + gC55 > 0

(g = C11C22C33 − C11C
2
23 − C22C

2
13 − C33C

2
12 + 2C12C13C23) . (9)
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II. RADIAL DISTRIBUTION FUNCTION

Based on ring statistics [3], the radial distribution function (RDF), g(r), is measured via the

following equation:

g(r) =
dn

4πr2drρ
; ρ =

N

V
, (10)

where dn is taken as the number of atoms at a distance between r and r + dr, and N and V are

the number of atoms and the volume of the periodic simulation cell.

A deeper insight into the local structural distortion behavior under strain can be explained by

the radial distribution function (RDF) plots (cf., Equation 10) in Figure S1. As seen in Figure S1c,

we find that the longest peak split into two peaks when compressive/tensile strain is applied. This

indicates that the cation displacement in the monoclinic structure undergoes a different local cation

displacement direction when compressive/tensile strain is applied. We note that upon analyzing

our simulated RDF data of the other phases in Figure S1, there are no peak split under strain.
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III. BOND ELONGATION FROM QUADRATIC ELONGATION

The quadratic elongation, ⟨λ⟩ is a physical index to measure the degree of the off-center displace-

ment of a central atom in octahedron unit [4], and conventionally used to study the individual

contributions of the inter-octahedral distortions to the electronic band gap energy and optical

property of the perovskite structure [5, 6].

The quadratic elongation, ⟨λ⟩ is given by following the equation:

⟨λ⟩ = 1

n

n∑
i=1

(
li
l0

)2

(11)

where n is the coordination number of the central M atom (i.e., n = 6 refers to an octahedral

environment); li is the distance from the central M atom to the ith coordinating atom; l0 is the

center-to-vertex distance of an ideal polyhedron of the same volume. If the difference between the

measured and undistorted octahedron decreases, ⟨λ⟩ approaches the value of 1.

These quantities, however, provide only a rough measurement (simply estimate the lattice dis-

tortion isotropically) and cannot be taken as accurate index for axis-directional structural distor-

tion, which is particularly important in ferroelectrics as polarizable atoms often drive certain local

directional distortions from the structure, and understanding these directional distortion in terms

of cartesian coordinate is important for unlocking the mechanisms that lead to spontaneous polar-

ization and ferroelectricity. Furthermore, certain local directional distortions in octahedron result

in profound alterations of the crystal structure, electronic structure, and polarization orientation

[7].

We then have picture where the directional distortion in octahedron of a given perovskite

provide a hint on the correlation between the structure, polarization orientation, and electronic

structure, but a detailed anisotropic structural analysis or index is always necessary for estimating

the electronic and polar properties.

Keeping this necessity in mind, we have defined the axis-decomposed directional quadratic

elongation, ⟨λi⟩ of a given absolute x, y, and z cartesian coordinate system instead of a, b, and c

unit cell vector based coordinate system to assess the directional off-centering distortion of central

atom in octahedron. In this approach, we show how to derive the equation for coordinated ⟨λi⟩,

which is useful to determine the distortion from three axis in a simple way.
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According to the Power Rule, Equation 11 can be derived in this way:

⟨λ⟩ = 1

6

6∑
i=1

(
l2i
l20

)
(12)

where the coordination number of the central M atom is 6 which, refer to an octahedral environ-

ment.

In order to understand the orientation-dependence of ⟨λ⟩, we express the bond length, li (center-

to-vertex distance of the octahedron) as composition of a given absolute x, y, and z cartesian

coordinate system of cartesian 3-space, where the vector of li is defined as

−→
li =

−→
M −

−→
O =


x1 − x2

y1 − y2

z1 − z2

 =


∆xi

∆yi

∆zi

 (13)

where the vector of metal in octahedron, −→
M = (x1, y1, z1), the vector of vertex in octahedron,

−→
O = (x2, y2, z2), and the vector of li,

−→
li =

−→
M −

−→
O = (∆xi,∆yi,∆zi) are reformulated in this way.

In this approach the bond length, li can be re-formulate as follow:

li =

√
−→
li 2 =

√
∆x2i +∆y2i +∆z2i (14)

where ∆x2i , ∆y2i , and ∆z2i are the difference of x, y, z vector components between center-to-vertex

of the octahedron −→
li to the second power.

Then we can re-write Equation 11, ⟨λ⟩ by substituting Equation 14 into Equation 12 as below:

⟨λ⟩ = 1

6

{
6∑

i=1

(
∆x2i
l20

)
+

6∑
i=1

(
∆y2i
l20

)
+

6∑
i=1

(
∆z2i
l20

)}
(15)

In short, ⟨λ⟩ could be defined as the following Equation:

⟨λ⟩ = ⟨λx⟩+ ⟨λy⟩+ ⟨λz⟩ (16)

where ⟨λx⟩, ⟨λy⟩, and ⟨λz⟩ are 1
6

∑6
i=1

(
∆x2

i

l20

)
, 1
6

∑6
i=1

(
∆y2i
l20

)
, and 1

6

∑6
i=1

(
∆z2i
l20

)
respectively.

Compared with conventional mean octahedral quadratic elongation parameters that only con-

sider the isotropic distortion for octahedra, anisotropic quadratic elongation enable straightforward

analysis for the degree of the directional off-center displacement of central atom in octahedron.
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However, we have found that the anisotropic quadratic elongation does not matched directly

with the directional distortion under the biaxial strain due to the displacement values being squared

(as seen in Equation 15). To be more specific, when compressive strain is applied in tetra KNO, the

O anions along the y-direction moves the same distance according to strain in opposing directions,

while the shift of Nb cation is along the z-direction. It means that the difference of dNb−O along the

y-direction (between dNb−O−
y

and dNb−O+
y

) is zero (i.e., no distortion in the y-direction). Here, if

we square the difference in the center-to-vertex distances, then it will be misleading as the squared

term contributes to making a spurious value despite no distortion in the y-direction.

One way to avoid this is by choosing the displacement value itself instead of absolute squared

one, the bond elongation index λi, thus providing directly the anisotropic distortion in octahedron.

Here, we have found that the bond elongation index is a convenient and realistic measure of

anisotropic distortion of central atom in octahedron. we re-define and propose the (revised) bond

elongation index defined as following:

[
λx, λy, λz

]
=

1

n

[
n∑

i=1

∆xi
l0

,
n∑

i=1

∆yi
l0

,
n∑

i=1

∆zi
l0

]
, (17)

where ∆xi, ∆yi, and ∆zi are vector components of l⃗i, which is a vector from i atom at polyhedron

vertex to the center of the polyhedron, in the formal x, y, and z Cartesian axes. With the normal-

ization of l0, this formulation allows us to investigate the anisotropic metal off-center displacement

values in the polyhedron without taking a mean-field approach (as is in the case of ⟨λ⟩).
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IV. FIGURES

Figure S1. Atomic and crystal structures of KNbO3 polymorphs. (a) Rhombohedral 3m, (b) orthorhombic
Amm2, (c) monoclinic Pm, (d) tetragonal P4mm, and (e) cubic Pm3̄m. The corresponding space groups
for each polymorph is shown and the K, Nb, and O atoms are depicted as white, blue, and red spheres,
respectively.

Figure S2. Calculated radial distribution function (RDF), g(r), of KNbO3 in (a) rhombohedral,
(b) orthorhombic, (c) monoclinic, and (d) tetragonal phases within a coordination sphere of radius r. Yellow,
blue, red lines indicate K−O, Nb−O, and O−O bonds.
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Figure S3. Band structures and density-of-states (DOS) plots for (a) rhombohedral, (b) monoclinic,
(c) orthorhombic, and (d) tetragonal phases of KNbO3. Yellow and blue lines in the band structures show
the valence and conduction bands, respectively. Blue and red lines in the DOS indicate Nb 4d and O 2p
states, while the grey show the total DOS.
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Figure S4. Electron localization function (ELF) line profiles along the bonding path for (a) Si and (b) NaCl.
The ELF spans from 0 to 1, where 1 denotes maximum localization of the electronic density.
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Figure S5. Calculated directional bond elongation (λ̄i), of KNbO3 in (a) rhombohedral, (b) orthorhombic,
(c) monoclinic, and (d) tetragonal phases with respect to strain from −4 % to 4 %. Here, the blue, red, black,
and orange circles represent the rhombo, ortho, mono, and tetra KNbO3 phases, respectively.
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Figure S6. Spontaneous polarization Ps derived from K for the four polar polymorphs of KNbO3 with
respect to strain from −4 % to 4 %.
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Figure S7. Calculated total energy differences, ∆E for the polar polymorphs of KNbO3 as a function of
biaxial strain, where the relative energy is referred to that of the cubic (Pm3̄m) phase at 0% strain.
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V. TABLES

Table S1. Γ-centered k-point meshes and the corresponding number of irreducible k-points using the uni-
form reciprocal distance of k grid for structural optimization calculation. The last column gives the total
calculated energy (E) per formula unit of KNbO3.

Space group k-spacing k-grid irreducible k-points E (eV/f.u.)

rhombo KNbO3 R3m 0.20 7 × 7 × 5 32 −40.72965
0.15 9 × 9 × 7 69 −40.72971

ortho KNbO3 Amm2 0.20 8 × 6 × 6 80 −40.72878
0.15 11 × 8 × 8 150 −40.72878

mono KNbO3 Pm 0.15 11 × 11 × 11 366 −40.72859

tetra KNbO3 P4mm 0.20 8 × 8 × 8 75 −40.72328
0.15 11 × 11 × 11 126 −40.72331
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Table S2. Optimized lattice parameters (a0, b0, c0 in Å, and α, β, and γ in ◦), crystallographic space group,
and formation energies (∆H f in eV/f.u.) of bulk KNbO3 polymorphs, calculated using PBEsol, optB86b,
and SCAN xc functionals with comparison of other theoretical and experimental literatures. All theory
results are taken from Refs. 8 and 9. Other relevant experimental values are also listed and taken from
Refs. 10 and 11.

xc Phase a0 (Å) b0 (Å) c0 (Å) α β γ Space group ∆H f (eV/f.u.)

PBEsol rhombo 5.655 5.655 6.943 90 90 120 R3m −13.248
mono 4.027 3.962 4.017 90 90.17 90 Pm −13.247
ortho 3.962 5.680 5.696 90 90 90 Amm2 −13.247
tetra 3.970 3.970 4.059 90 90 90 P4mm −13.242

optB86b rhombo 5.682 5.682 6.976 90 90 120 R3m −13.964
mono 4.050 3.980 4.029 90 90.17 90 Pm −13.962
ortho 3.979 5.707 5.723 90 90 90 Amm2 −13.963
tetra 3.987 3.987 4.077 90 90 90 P4mm −13.956

SCAN rhombo 5.669 5.669 6.976 90 90 120 R3m −14.306
mono 4.044 3.960 4.041 90 90.22 90 Pm −14.304
ortho 3.960 5.702 5.731 90 90 90 Amm2 −14.304
tetra 3.969 3.969 4.103 90 90 90 P4mm −14.295

Theorya,b rhombo 5.707 5.707 7.017 90 90 120 R3m −
mono 4.023 3.961 4.020 90 90.18 90 Pm −
ortho 3.980 5.744 5.771 90 90 90 Amm2 −
tetra 3.992 3.992 4.128 90 90 90 P4mm −

Experimentc,d rhombo 5.651 5.651 6.947 90 90 120 R3m −
mono 4.050 3.992 4.021 90 90.1 90 Pm −
ortho 3.973 5.695 5.721 90 90 90 Amm2 −
tetra 3.997 3.997 4.063 90 90 90 P4mm −

a Reference 8
b Reference 9
c Reference 10
d Reference 11
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Table S3. Calculated elastic constants of polar KNbO3 polymorphs with the PBEsol xc functional. The
elastic stability of these polymorphs are determined by satisfying the Born-Huang criteria (BHc).

Phase C11 C22 C33 C44 C55 C66 C12 C13 C14 C15 C23 C25 C35 C46 BHc

rhombo 245.9 - 245.6 37.9 - 73.6 98.6 75.3 −31.2 - - - - - Satisfy
mono 173.2 374.6 177.4 92.4 88.0 91.9 91.2 109.7 - 5.1 95.0 −1.4 6.0 0.8 Satisfy
ortho 374.3 241.2 219.1 33.0 91.0 93.0 91.6 94.4 - - 54.2 - - - Satisfy
tetra 387.1 - 169.9 90.0 - 96.0 85.5 84.1 - - - - - - Satisfy
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Table S4. DFT-calculated band-gap energy (ϵgap) of KNbO3 polymorphs using various xc functionals. All
polymorphic phases exhibit an indirect band gap. The positions of valence band maximum (ϵVBM) and the
conduction band minimum (ϵCBM) are determined from the electronic band structure diagrams.

Phase xc Eg (eV) ϵVBM → ϵCBM

rhombo HSE06@PBEsol 3.47 T → Γ

PBEsol 2.17 T → Γ

SCAN 2.76 T → Γ

optB86b 2.16 T → Γ

mono HSE06@PBEsol 3.26 R → Γ

PBEsol 1.91 R → Γ

SCAN 2.54 R → Γ

optB86b 1.93 R → Γ

ortho HSE06@PBEsol 3.26 T → Γ

PBEsol 1.96 T → Γ

SCAN 2.44 T → Γ

optB86b 2.00 T → Γ

tetra HSE06@PBEsol 2.88 A → Γ

PBEsol 1.55 A → Γ

SCAN 1.84 A → Γ

optB86b 1.58 A → Γ
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Table S5. Born effective charges (Z∗) of unstrained KNbO3 polymorphs.

Phase Space group ion Wyckoff position xx yy zz xy xz yx yz zx zy

tetra P4mm K (1b) 1.14 1.14 1.19 - - - - - -
Nb (1a) 9.18 9.18 7.15 - - - - - -
O (2c) −7.01 −1.75 −1.43 - - - - - -
O (1a) −1.56 −1.56 −5.48 - - - - - -

ortho Amm2 K (2b) 1.14 1.18 1.16 - - - - - -
Nb (2a) 8.99 8.13 7.30 - - - - - -
O (4d) −1.61 −3.91 −3.47 - - - −2.30 - −2.15
O (2b) −6.91 −1.49 −1.53 - - - - - -

mono Pm K (1a) 1.17 1.15 1.16 - 0.01 - - 0.01 -
Nb (1b) 7.59 9.01 7.89 - 0.41 - - 0.41 -
O (1a) −1.49 −6.92 −1.53 - 0.02 - - 0.02 -
O (1b) −1.45 −1.63 −6.05 - −0.29 - - −0.14 -
O (1b) −5.82 −1.60 −1.47 - −0.15 - - −0.29 -

rhombo R3m K (3a) 1.17 1.17 1.15 - - - - - -
Nb (3a) 8.43 8.43 7.45 - - - - - -
O (9b) −1.51 −4.89 −2.87 - - - 2.20 - 2.05
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Table S6. The calculated energy difference (∆E) with respect to the cubic (Pm3̄m) phase using HSE06 xc
functional based on the optimized structure from PBEsol xc functional (HSE06@PBEsol) and the calculated
∆E with respect to the cubic (Pm3̄m) phase using PBEsol xc fuctional.

Space group xc functional ∆E (meV/f.u.)

rhombo KNbO3 R3m HSE06@PBEsol −56.76
PBEsol −28.53

ortho KNbO3 Amm2 HSE06@PBEsol −56.32
PBEsol −27.66

mono KNbO3 Pm HSE06@PBEsol −55.31
PBEsol −27.48

tetra KNbO3 P4mm HSE06@PBEsol −45.20
PBEsol −22.16
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