# Supporting Information

# Y<sub>2</sub>(Ge,Si)O<sub>5</sub>:Pr Phosphors: Multimodal Temperature and Pressure Sensors Shaped by Bandgap Management

Małgorzata Sójka<sup>1</sup>, Marcin Runowski<sup>2,\*</sup>, Przemysław Woźny<sup>2</sup>, Luis D. Carlos<sup>3</sup>, Eugeniusz Zych<sup>1,\*</sup>, Stefan Lis<sup>2</sup>

<sup>1</sup> University of Wroclaw, Faculty of Chemistry, 14. F. Joliot-Curie Street, 50-383 Wroclaw, Poland

<sup>2</sup> Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland

<sup>3</sup>Phantom-g, CICECO-Aveiro Institute of Materials, Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal

| 1. | Vacuum referred binding electron diagrams of Y2(Gex,Si1-x)O5 host lattices | 2  |
|----|----------------------------------------------------------------------------|----|
| 2. | Structural properties                                                      | 2  |
| 3. | Photoluminescent properties                                                | 4  |
| 4. | Thermometric properties                                                    | 7  |
| 5. | Literature                                                                 | 16 |



1. Vacuum referred binding electron diagrams of Y<sub>2</sub>(Ge<sub>x</sub>,Si<sub>1-x</sub>)O<sub>5</sub> host lattices

**Figure S1.** VRBE diagrams of  $Y_2(Ge_x,Si_{1-x})O_5$  solid solutions. The data for the diagrams were taken from papers published by Dorenbos<sup>1–3</sup> who developed this very useful methodology to relate the host bands and activator's electronic levels to each other. A proper values which were used to construct VRBE diagrams are presented in Table S1.

#### 2. Structural properties

**Figure S2a,b** presents details of the local symmetry of the two different  $Y^{3+}$  sites (marked as Y1 and Y2) in the isostructural  $Y_2SiO_5$  and  $Y_2GeO_5$  compounds. In both structures the trivalent yttrium ions are located in two non-equivalent sites, both with *C1* symmetry but different coordination numbers (CN) of 7 (Y1) and 6 (Y2).<sup>4</sup> It is expected that the Pr<sup>3+</sup> ion, having a larger ionic radius than Y<sup>3+</sup> (1.27 A, 0.96 A, respectively<sup>5</sup> for CN = 7), occupies mostly the

larger Y1 site, for which CN and, consequently, the RE-O distances are larger. This postulate comes from the results of EPR studies of LSO:Ce and YSO:Ce monocrystals, in which far more of the Ce<sup>3+</sup> ions, similarly large as Pr<sup>3+</sup>, are located in Y1 sites.<sup>6,7</sup>



**Figure S2.** The coordination spheres of  $Y^{3+}$  ions in the two different sites offered by (a)  $Y_2SiO_5$ , (b)  $Y_2GeO_5$ .<sup>8,9</sup>



**Figure S3.** The recorded XRD patterns of the investigated  $Y_2(Ge_x,Si_{1-x})O_5$ :Pr phosphors. The black dotted lines emphasize the shift of the diffraction lines towards lower angles with the increasing Ge content.

3. Photoluminescent properties



**Figure S4.** (a) Scheme of the energy level diagram of  $Pr^{3+}$  with indicated emission transitions and their characteristic wavelengths. (b) emission spectrum of the  $Y_2(Ge_{0.25},Si_{0.75})O_5$ :Pr recorded at 11 K under 250 nm excitation. Assignment of the emission features to the transitions of the  $Pr^{3+}$  ion is also given in (b).



**Figure S5.** Decay traces of the 5d $\rightarrow$ 4f luminescence of the Y<sub>2</sub>Ge<sub>x</sub>,Si<sub>1-x</sub>O<sub>5</sub>:Pr phosphors under 250 nm excitation where (a) x = 0 %, (b) x = 10%, (c) x = 25%, (d) x = 50%, (e) x = 75%. Instrumental response function (IRF) is also given (black dots) in each panel.



Figure S6. Schematic configuration coordinate diagram presenting quenching mechanism of the  $5d\rightarrow 4f$  luminescence through (a) cross-over process, (b) thermally activated photoionization.



**Figure S7.** Decay traces of the (a)  ${}^{3}P_{0}$  and (b)  ${}^{1}D_{2}$  luminescence of the Y<sub>2</sub>(Ge<sub>x</sub>,Si<sub>1-x</sub>)O<sub>5</sub>:0.05%Pr phosphors recorded at RT under 250.50 nm excitation. The corresponding calculated decay times are presented in Table S3.



**Figure S8.** Time-resolved luminescence measurements upon excitation at 250 nm recorded at 11 K for each of the investigated materials.

# 4. Thermometric properties

For the calculations of thermometric parameters based on intensity (*I*) of emission bands, the spectra were converted from photon flux per constant wavelength interval function into photon flux per energy (*E*) interval by means of Jacobian transformation<sup>10,11</sup>, see Eq. S1:

$$f(E) = f(\lambda)\frac{d\lambda}{dE} = f(\lambda)\frac{d}{dE}\left(\frac{hc}{E}\right) = -f(\lambda)\frac{hc}{E^{2}},$$
(S1)

where h represents Planck constant and c is the speed of light in a vacuum. The minus in the equation can be ignored as it only points to different integration directions in *E* and  $\lambda$ .



**Figure S9.** Representation of areas of spectra (A1, A2, A3) which were used in thermometric analysis. An analogous approach was used for all investigated compositions.

The integrated areas  $(I_i)$  of the 5d $\rightarrow$ 4f and 4f $\rightarrow$ 4f luminescence were calculated using Eq. S2:

$$I_{i} = \int_{E_{1}}^{E_{2}} \Gamma(E,T) \, dE, \tag{S2}$$

The relative uncertainty of the integrated areas,  $\delta I/I$ , were estimated with Eq. S3:

$$\left(\frac{\delta I}{I}\right)^2 = \int_{E_1}^{E_2} \left[ \left(\frac{\delta \Gamma}{\Gamma}\right)^2 + \left(\frac{\delta E}{\Delta E_s}\right)^2 \right] dE, \qquad (S3)$$

where  $\delta E$  represents uncertainty in the energy step ( $\Delta E_s$ ) which is given as a product of the detection slit widths (0.20-0.25 mm) and reciprocal of the linear dispersion of the diffraction grating (1.8 nm/mm),  $\delta \Gamma/\Gamma$  stands for relative uncertainty on intensity. The latter was calculated by estimation of the signal-to-noise ratio (*SNR*) in each analysed spectrum( $\delta I/I$ ). This parameter was calculated by dividing the readout fluctuations of the baseline (calculated as the standard deviation of a given spectral region) by the maximum intensity value of the transition under integration.



Figure S10. Thermal evolution of the integrated areas (A1, A2, A3 – see Figure S9) of  $Y_2(Ge_xSi_{1-x})O_5$ :Pr where (a) x = 0, (b) x = 10%, (c) x = 25%, (d) x = 50%, (e) x = 75%, (f) x = 100%.

The uncertainty in determined *LIR* value were calculated according to Eq. S4<sup>12</sup>:

$$\delta LIR = \sqrt{\left(\frac{\delta I_1}{I_1}\right)^2 + \left(\frac{\delta I_2}{I_2}\right)^2} * LIR, \qquad (S4)$$

where  $\delta I_i/I_i$  (i=1,2) is estimated through the *SNR* values.



**Figure S11.** Thermal evolution of  $LIR_1$  and  $LIR_2$  for all the phosphors. The corresponding fitting parameters are presented in Table S5.



Figure S12. Calibration curves of the  $Y_2(Ge_x,Si_{1-x})O_5$ :Pr luminescence thermometers using the *LIR*<sub>3</sub> (A2/A3), where (a) x = 0%, (b) x = 10%, (c) x = 25%, (d) x = 50%, (e) x = 75%, (f) x = 100%.

### **Repeatability of thermometric parameters**

In order to check the stability of the temperature measurement, we performed repeatability tests. The emission spectra were measured in ten consecutive heating-cooling cycles. The repeatability was calculated using of Eq S5:

$$R = 1 - \frac{max(LIR_c - LIR_i)}{LIR_c},$$
(S5)

where  $LIR_c$  stands for the mean thermometric parameter (extracted from the calibration curve), and  $LIR_i$  represents the value of thermometric parameter calculated for each cycle. The computed repeatability never drops below 99.4% during the ten cycles, which is a very good result.



**Figure S13.** Results of repeatability measurements of  $Y_2(Ge_x,Si_{1-x})O_5$ :Pr obtained from ten consecutive heating-cooling cycles. For (a) - (e) the presented R values are the lowest (the "worst") of the three calculated for each phosphor.

# **Relative thermal sensitivity**

The calculated relative thermal sensitivities are presented in Figure 6a-c. The error of the obtained  $S_r$  is determined by Eq. S6:

$$sS_r = \sqrt{2} \frac{\sigma LIR}{LIR} S_r \tag{S6}$$

#### **Temperature uncertainty**

The temperature uncertainty based on LIR (see Eq. 2) was calculated using Eq. S7

$$\delta T = \frac{1 \,\delta LIR}{S_r \,LIR},\tag{S7}$$

where  $\delta LIR/LIR$  was calculated according to Eq. S4. The derived experimental data were fitted with 3<sup>rd</sup>-order polynomial functions.

The error in  $\delta T$  can be estimated using Eq. S8:

$$s\delta T = \sqrt{2} \frac{\sigma LIR}{LIR} \delta T \tag{S8}$$



**Figure S14**. Temperature uncertainty of the  $Y_2(Ge_xSi_{1-x})O_5$ :Pr luminescence thermometers based on (a) *LIR*<sub>1</sub>, (b) *LIR*<sub>2</sub>, (c) *LIR*<sub>3</sub>.

In the case of temperature uncertainty when the decay times of the  $5d \rightarrow 4f$  luminescence is used

Eq. S9 applies:

$$\frac{\delta LIR}{LIR} = \sqrt{2} \frac{\delta \tau}{\tau},\tag{S9}$$

from which Eq. S10 could be derived:

$$\delta T = \frac{\sqrt{2}\delta\tau}{S_r \ \tau},\tag{S10}$$

whereas  $\delta \tau$  stands for the error in determination of  $\tau$  using the Lavenberg-Marenberg algorithm.



Figure S15. Temperature uncertainty based on 5d $\rightarrow$ 4f emission decay time of the Y<sub>2</sub>Ge<sub>x</sub>Si<sub>1-x</sub>O<sub>5</sub>:Pr phosphors.

| X    | E <sup>ex</sup> (eV) | E <sup>CT</sup> (eV) | U (6,A) (eV) |
|------|----------------------|----------------------|--------------|
| 0    | 6.80                 | 4.81                 | 6.83         |
| 0.10 | 6.74                 | 4.83                 | 6.83         |
| 0.25 | 6.65                 | 4.85                 | 6.83         |
| 0.50 | 6.50                 | 4.89                 | 6.82         |
| 0.75 | 6.35                 | 4.93                 | 6.82         |
| 1    | 6.20                 | 4.96                 | 6.82         |

**Table S1.** Experimental data on exciton energy (Eex), charge transfer (ECT), Coulomb repulsion energy (U (6,A)) for  $Y_2$ (Ge,Si)O<sub>5</sub> host lattices.

**Table S2.** 300 K crystal data of  $Y_2SiO_5$  and  $Y_2GeO_5$  derived from Rietveld refinements. See ref <sup>8,9</sup> for more information.

| Refined formula | $Y_2SiO_5^8$              | Y <sub>2</sub> GeO <sub>5</sub> <sup>9</sup> |
|-----------------|---------------------------|----------------------------------------------|
| Crystal system  | monoclinic                | monoclinic                                   |
| Space group; Z  | <i>I</i> 2/a; 8           | <i>I</i> 2/a; 8                              |
| Unit cell       | a= 10.4207 (3) Å          | a= 10.4706 (2) Å                             |
|                 | b= 6.7281(2) Å            | b= 6.8292 (1) Å                              |
|                 | c= 12.4966(3) Å           | c= 12.8795 (2) Å                             |
|                 | α= 90 °                   | $\alpha = 90$ °                              |
|                 | β= 102.691(2) °           | β= 101.750 (3) °                             |
|                 | γ= 90 °                   | γ= 90 °                                      |
| Volume          | 854.751(3) Å <sup>3</sup> | 901.66 (3) Å <sup>3</sup>                    |

**Table S3.** Calculated decay times of emissions from the  ${}^{3}P_{0}$  and  ${}^{1}D_{2}$  levels of  $Pr^{3+}$  in the  $Y_{2}(Ge_{x},Si_{1-x})O_{5}$  compositions under 250.50 nm excitation. All decay traces were registered at RT.

| Composition | <sup>3</sup> P <sub>0</sub> level (µs) | <sup>1</sup> D <sub>2</sub> level (µs) |
|-------------|----------------------------------------|----------------------------------------|
| 0% Ge       | 2.5                                    | 122.3                                  |
| 10% Ge      | 3.2                                    | 110.7                                  |
| 25% Ge      | 4.1                                    | 112.3                                  |
| 50% Ge      | 5.8                                    | 127.1                                  |
| 75% Ge      | 7.0                                    | 122.7                                  |

| 100% Ge | 8.6 | 101.6 |
|---------|-----|-------|
|         |     |       |

| x Ge | <i>I</i> <sub>1</sub> (eV) | <i>I</i> <sub>2</sub> (eV) | <i>I</i> <sub>3</sub> (eV) |
|------|----------------------------|----------------------------|----------------------------|
| 0.00 | 4.844-3.283                | 2.654-2.382                | 2.180-2.009                |
| 0.10 | 4.828-3.376                | 2.664-2.380                | 2.200-2.005                |
| 0.25 | 4.813-3.407                | 2.627-2.373                | 2.160-2.011                |
| 0.50 | 4.789-3.301                | 2.627-2.380                | 2.154-2.016                |
| 0.75 | 4.778-3.300                | 2.635-2.381                | 2.131-2.019                |
| 1.00 | -                          | 2.620-2.383                | 2.131-2.015                |

Table S4. Integration limits used to calculate the integrated areas of the analyzed three transitions.

**Table S5.** Fitting parameters obtained by the Mott-Seitz model for all the  $Y_2(Ge_x,Si_{1-x})O_5$ :Pr compositions.

|      | The Mott-Seitz model fitting parameters (Eq. 3) for the <i>LIR</i> <sub>1</sub> |                       |              |                        |            |                |  |  |
|------|---------------------------------------------------------------------------------|-----------------------|--------------|------------------------|------------|----------------|--|--|
| x    | LIR <sub>0</sub>                                                                | α1                    | $\Delta E_1$ | α2                     | ΔΕ2        | r <sup>2</sup> |  |  |
| 0.00 | 192.43±8.83                                                                     | $(11\pm 4)\pm 10^{6}$ | 0.38±0.04    |                        |            | 0.997          |  |  |
| 0.10 | 45.05±2.09                                                                      | 1.20±0.13             | 0.01±0.006   | $(2.34\pm0.3)\pm10^5$  | 0.32±0.02  | 0.991          |  |  |
| 0.25 | 15.28±0.72                                                                      | 1.75±0.23             | 0.01±0.004   | $(7.24\pm0.3)\pm10^3$  | 0.26±0.01  | 0.999          |  |  |
| 0.50 | 3.25±0.21                                                                       | 13.08±1.21            | 0.02±0.006   | $(8.84\pm0.1)\pm10^2$  | 0.08±0.01  | 0.999          |  |  |
| 0.75 | 0.66±0.05                                                                       | 5.50±0.03             | 0.01±0.006   | 755.50±18.62           | 0.03±0.01  | 0.999          |  |  |
|      | The Mott-Seitz model fitting parameters (Eq. 3) for the <i>LIR</i> <sub>2</sub> |                       |              |                        |            |                |  |  |
| 0.00 | 25.03±1                                                                         | 0.84±0.23             | 0.02±0.006   | $(9.4\pm0.2)\pm10^{6}$ | 0.38±0.04  | 0.992          |  |  |
| 0.10 | 25.22±0.38                                                                      | 2.16±0.22             | 0.02±0.001   | $(5.78\pm0.3)\pm10^5$  | 0.32±0.02  | 0.997          |  |  |
| 0.25 | 15.23±0.08                                                                      | 2.32±0.05             | 0.02±0.007   | $(8.5\pm0.7)\pm10^3$   | 0.25±0.01  | 0.999          |  |  |
| 0.50 | 5.08±0.02                                                                       | 1.92±0.11             | 0.04±0.002   | $(2.8\pm0.1)\pm10^3$   | 0.10±0.01  | 0.994          |  |  |
| 0.75 | 0.11±0.001                                                                      | 0.72±0.01             | 0.004±0.001  | 8.29±0.62              | 0.03±0.001 | 0.992          |  |  |

| Table S6  | . Fitting parameters | for the $LIR_3(T)$ | dependence o | $f Y_2(Ge_x, Si_{1-x})$ | O <sub>5</sub> :Pr deriv | ved us | sing |
|-----------|----------------------|--------------------|--------------|-------------------------|--------------------------|--------|------|
| the polyn | omial functions.     |                    |              |                         |                          |        |      |

| X    | A <sub>0</sub> | A <sub>1</sub> x 10 <sup>-4</sup> | A <sub>2</sub> x 10 <sup>-5</sup> | A <sub>3</sub> x 10 <sup>-8</sup> | A <sub>4</sub> x 10 <sup>-11</sup> | <i>r</i> <sup>2</sup> |
|------|----------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|-----------------------|
| 0.00 | -3.83±0.37     | $(0.32\pm0.1) \ge 10^5$           | -9.25±0.89                        | 11.4±0.11                         | -5.19±0.56                         | 0.999                 |
| 0.10 | 0.50±0.06      | 9.46±0.85                         | -1.19±0.5                         | 3.35±0.58                         |                                    | 0.994                 |
| 0.25 | 1.11±0.02      | $(2.5\pm0.001) \ge 10^3$          | $(1.61\pm0.004) \ge 10^3$         | -                                 | -                                  | 0.997                 |
| 0.50 | 1.87±0.01      | $(4.4\pm0.005) \ge 10^3$          | 0.32±0.005                        | -                                 | -                                  | 0.999                 |

| 0.75 | 2.37±0.14 | -11.79±0.67              | -2.86±0.39 | -5.21±0.72 | -2.91±0.22 | 0.999 |
|------|-----------|--------------------------|------------|------------|------------|-------|
| 1.00 | 1.26±0.01 | $(1.17\pm0.02) \ge 10^6$ | -          | -          | -          | 0.995 |

#### 5. Literature

- 1 P. Dorenbos, J. Lumin., 2000, 91, 155–176.
- 2 P. Dorenbos, J. Phys. Condens. Matter, 2003, 15, 8417–8434.
- 3 P. Dorenbos, J. Lumin., 2003, **104**, 239–260.
- N. I. Leonyuk, E. L. Belokoneva, G. Bocelli, L. Righi, E. V. Shvanskii, R. V. Henrykhson, N. V. Kulman and D. E. Kozhbakhteeva, *Cryst. Res. Technol.*, 1999, 34, 1175–1182.
- 5 R. D. Shannon, Acta Crystallogr. Sect. A, 1976, **32**, 751–767.
- M. S. Buryi, V. V. Laguta, D. V. Savchenko and M. Nikl, *Adv. Sci. Eng. Med.*, 2013, 5, 573–576.
- V. Babin, V. V. Laguta, M. Nikl, J. Pejchal, A. Yoshikawa and S. Zazubovich, *Opt. Mater. (Amst).*, 2020, 103, 109832.
- K. A. Denault, J. Brgoch, S. D. Kloß, M. W. Gaultois, J. Siewenie, K. Page and R. Seshadri, ACS Appl. Mater. Interfaces, 2015, 7, 7264–7272.
- 9 E. M. Rivera-Muñoz and L. Bucio, *Acta Crystallogr. Sect. E Struct. Reports Online*, 2009, **65**, i60–i60.
- 10 J. Mooney and P. Kambhampati, J. Phys. Chem. Lett., 2013, 4, 3316–3318.
- 11 G. Blasse and B. . Grabbmaier, *Luminescent Materials*, Springer-Verlag Berlin Heidelberg, 1994.
- 12 C. D. S. Brites, A. Millán and L. D. Carlos, in *Handbook on the Physics and Chemistry of Rare Earths*, 2016, vol. 49, pp. 339–427.