Supporting Information

Photosensitive-type CPL Response Controlled by Intermolecular Dynamic FRET and Chiral Transfer in Ternary Chiral Emissive Nematic Liquid Crystals

Kun Yao, ${ }^{\text {a, }, ~}{ }^{\text {b }}$ Yang Li, ${ }^{\text {a, b }}$ Yihao Shen, ${ }^{\text {b }}$ Yiwu Quan, ${ }^{* b}$ Yixiang Cheng,*a
a Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
E-mail: yxcheng@nju.edu.cn
${ }^{\mathrm{b}}$ Key Laboratory of High Performance Polymer Materials \& Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

E-mail: quanyiwu@nju.edu.cn

Materials: All chemicals and reagents were purchased from Aladdin, Alfa Aesar and used as received without further purification. Nematic liquid crystal E7 $\left(n_{e}=1.741, n_{0}\right.$ $=1.517$, at $589 \mathrm{~nm} ; \mathrm{T}_{\mathrm{m}}=-40^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{i}}=59^{\circ} \mathrm{C}$) and was purchased from Suzhou King Optonics Co. Ltd. The LC cells were purchased from Suzhou King Optonics CO. Ltd. Characterizations: The ${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra were record on a 400 MHz Bruker AVANCE III-400 spectrometer by using CDCl_{3} as solvent and the TMS as internal standard. Fluorescence (FL) spectra were measured by using a HORIBA Scientific Fluoromax-4 Spectrofluorometer. The UV-visible (UV-vis) absorption spectra were recorded Hitachi U-3900 spectrophotometer. Circular dichroism (CD) spectra and circularly polarized luminescence (CPL) spectra were recorded by using JASCO J-810 spectropolarimeter and JASCO CPL-300 spectrofluoropolarimeter in quartzose cells (the thickness of the LC cell is $15 \mu \mathrm{~m}$), respectively. Fluorescence lifetime measurements were recorded on Edinburg FLS-980 fluorescence spectrometer.

Synthesis of the $R / S-B F$.

Intermediate R / S-1 were prepared as our previously described. ${ }^{\mathrm{S} 1}$

Scheme S1. The synthesis procedures of R / S-BF enantiomers.

Compound 2: Intermediate 2 was synthesized from (9,9-Dimethyl-9H-fluoren-2yl)boronic acid ($2 . .00 \mathrm{~g}, 8.39 \mathrm{mmol}$), 4-Bromophenylacetonitrile ($1.97 \mathrm{~g}, 10.08 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.18 \mathrm{~g}, 0.16 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.74 \mathrm{~g}, 12.56 \mathrm{mmol})$ in a mixture solvent of 30 mL 1,4-Dioxane and $10 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ at $85^{\circ} \mathrm{C}$ under N_{2} atmosphere for 12 h . After the reaction was finished, the mixture was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 $\mathrm{ml} \times 3$). The organic layer was dried with anhydrous sodium sulfate and filtrated. Then evaporated under reduced pressure. The crude product was purified with silica gel colum chromatography (eluent: petroleum ether/ethyl acetate, $\mathrm{v} / \mathrm{v}, 4: 1$) to give 2.08 g of 2 (yellow solid in 80% yeild) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.78(\mathrm{~d}, J=8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.76-7.74(\mathrm{dd}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.66(\mathrm{~d}, J=12 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.55$ (dd, $J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.37,153.87,141.54,139.31,138.90,138.68,128.65$,
128.37, 127.89, 127.42, 127.08, 126.14, 122.64, 121.32, 120.37, 120.15, 46.99, 27.23, 23.37.

Compound $\boldsymbol{R} / \boldsymbol{S}$-BF: Compound $\mathbf{2}(0.30 \mathrm{~g}, 0.97 \mathrm{mmol})$ and $\boldsymbol{R} / \boldsymbol{S}-\mathbf{1}(0.17 \mathrm{~g}, 0.49 \mathrm{mmol})$ were dissolved in 20 mL ethanol and $\mathrm{CH}_{3} \mathrm{ONa}(0.052 \mathrm{~g}, 0.97 \mathrm{mmol})$ were added, respectively. Then stirred at room temperature for 3 h . After the reaction was finished, the product was purified by recrystallization from ethanol to give compound $\boldsymbol{R} / \boldsymbol{S}$-BF as a yellow solid $(0.28 \mathrm{~g})$ in 62% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.98(\mathrm{~s}, 2 \mathrm{H})$, 8.14-8.11 (t, $J=12 \mathrm{~Hz}, 4 \mathrm{H}), 7.88-7.86(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.82-7.76(\mathrm{~m}, 8 \mathrm{H}), 7.69(\mathrm{~s}$, $2 \mathrm{H}), 7.64-7.62(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.53(\mathrm{t}, J=16 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.42-$ $7.38(\mathrm{t}, J=16 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 4 \mathrm{H}), 5.73(\mathrm{~s}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.66,153.91,148.87,142.86,139.21,138.95,138.61,135.37$, 133.10, 132.86, 131.24, 129.76, 129.60, 127.82, 127.54, 127.11, 126.70, 126.14, $126.09,122.67,121.29,120.47,120.21,113.66,47.01,27.23$.

Fig. S1. UV-vis absorption spectra of S-BF in THF solution $\left(1.0 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ with different states.

Fig. S2. POM images of a) $0.25 \mathrm{wt} \% \mathrm{~S}$-BF in E7 LCs before 365 nm UV irradiation at $25^{\circ} \mathrm{C}$. b) $0.25 \mathrm{wt} \% \mathrm{~S}$-BF in E7 LCs after 365 nm UV irradiation at $25^{\circ} \mathrm{C}$. c) 1.0 $\mathrm{wt} \% \mathrm{~S}$-BF in E7 LCs before 365 nm UV irradiation at $25^{\circ} \mathrm{C}$. d) $1.0 \mathrm{wt} \% S$-BF in E7 LCs after 365 nm UV irradiation at $25^{\circ} \mathrm{C}$.

Fig. S3. POM images of a) $0.5 \mathrm{wt} \% \mathrm{NR}$ in E7 LCs. b) $1.0 \mathrm{wt} \% \mathrm{NR}$ in E7 LCs.
The energy transfer efficiencies can be assessed from steady-state fluorescence spectrums by using the Equation $\mathbf{S 1}$ as shown in Figure S4. The F_{D} and F_{DA} are defined the maximum fluorescence intensity of Donor in the absence and presence of acceptor, respectively. ${ }^{\text {S2 }}$
$E=1-\frac{F_{D}}{F_{D A}}$
(Equation S1)

Fig. S4. The energy transfer efficiency (83\%) of Z-S-T-N*-LCs in the cases of $1 / 1$ ratio of $\mathrm{NR} / S-\mathrm{BF}\left(\lambda_{\mathrm{ex}}=370 \mathrm{~nm}\right)$.

Fig. S5. a) POM images of S-T-N*-LCs before 365 nm UV irradiation at $25^{\circ} \mathrm{C}$. b)
POM images of S-T-N*-LCs after 365 nm UV irradiation at $25^{\circ} \mathrm{C}$. c) The GrandjeanCano lines of S-T-N*-LCs before 365 nm UV irradiation at $25^{\circ} \mathrm{C}$. d) The Grandjean-

Cano lines of S-T-N*-LCs after 365 nm UV irradiation at $25^{\circ} \mathrm{C}$.

Fig. S6. ${ }^{1} \mathrm{H}$ NMR of $2\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Fig. S7. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{2}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Fig. S8. ${ }^{1} \mathrm{H}$ NMR of S-BF $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Fig. S9. ${ }^{13} \mathrm{C}$ NMR of S - $\mathrm{BF}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

References

[S1] X. Li, Y. Shen, K. Liu, Y. Quan and Y. Cheng, Mater. Chem. Front., 2020, 4, 2954-2961.
[S2] S. Lin, H. Sun, J. Qiao, X. Ding and J. Guo, Adv. Optical Mater., 2020, 8, 2000107.

