Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Combinatorial donor engineering for highly efficient blue thermally activated delayed fluorescence emitters with low efficiency roll-off

Dong Jin Shin, Junseop Lim, Jun Yeob Lee*

School of Chemical Engineering, Sungkyunkwan University

2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Korea

* Corresponding author

E-mail : leej17@skku.edu

Experimental

12*H*-benzofuro[3,2-*a*]carbazole was supplied from GOM tech. The ¹H and ¹³C NMR spectra of synthesized compounds in deuterated CDCl₃ were identified using Unity Inova (Varian, 500 MHz) spectrometer. The molecular weight was measured by Advion, ExpresionL CMS spectrometer in APCI mode. The PL spectra of the compounds dissolved in 1.0×10^{-5} M tetrahydrofuran (THF) and toluene solution were obtained using a fluorescence spectrophotometer (PerkinElmer, LS-55). The triplet energy of compounds was measured by low temperature PL spectra at 77 K. The UV-vis absorptions spectra were observed using UV-vis spectrophotometer (JASCO, V-730) dissolved in 1.0×10^{-5} M THF solution. The CV measurements of the compounds were carried out by IVIUM STAT. The standard material was Ferrocene, working electrode was carbon electrode, reference electrode was Ag and counter electrode was Pt. PL quantum yield and transient PL decay data were recorded using QuantaurusQY Absolute system (Hamamatsu, C11347-11) and Hamamatsu Quantaurus-Tau system (Hamamatsu, C11367-31).

Synthesis

6-Bromo-12H-benzofuro[3,2-a]carbazole

12H-benzofuro[3,2-a]carbazole (5 g, 19.43 mmol) and N-bromosuccinimide (4.50 g, 25.26mmol) were put into a two-neck round bottomed (RB) flask. The compound was stirred with magnetic bar with dimethyl formamide (DMF, 20 ml) solvent at room temperature. After 8 hours, the mixture was extracted with deionized water (DI water) and dichloromethane (MC) until organic material is completely separated from DI water. The crude organic material then was purified by column chromatography using an eluent of MC : hexane (1 : 4). The 6-bromo-12H-benzofuro[3,2-a]carbazole was obtained as a product. (5.22g, 80.0% yield)

¹H NMR (300 MHz, DMSO-d6) δ 12.17 (s, 1H), 8.71 – 8.51 (m, 2H), 8.23 (d, J = 7.7 Hz, 1H), 7.90 – 7.80 (m, 1H), 7.69 – 7.50 (m, 3H), 7.44 (t, J = 7.7 Hz, 1H), 7.24 (t, J = 7.4 Hz, 1H)

6-(9H-carbazol-9-yl)-12H-benzofuro[3,2-a]carbazole

6-Bromo-12H-benzofuro[3,2-a]carbazole (4.71 g, 14.00 mmol), 9H-carbazole (3.51 g, 21.00 mmol), sodium tert-butoxide (2.69 g, 28.00 mmol), 2-dicyclohexylphosphino-2',4',6'triisopropylbiphenyl (0.67 g, 1.4 mmol) and tris(dibenzylideneacetone)dipalladium(0) (0.38 g, 0.42 mmol) were poured to a RB flask. The mixture undergoes reaction under a reflux condition for 6 hours with o-xylene (25 ml) solvent. Further work-up and purification processes were the same as those of 6-bromo-12H-benzofuro[3,2-a]carbazole. Finally, a new donor moiety of 6-(9H-carbazol-9-yl)-12H-benzofuro[3,2-a]carbazole was synthesized as a product. (1.6 g, 27.1% yield)

¹H NMR (300 MHz, DMSO-d₆) δ 12.35 (s, 1H), 8.75 (d, J = 7.6 Hz, 1H), 8.58 (s, 1H), 8.27 (dd, J = 14.6, 7.7 Hz, 3H), 7.75 – 7.20 (m, 10H), 7.15 (d, J = 8.1 Hz, 2H)

6-(9H-carbazol-9-yl)-12-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-12H-benzofuro[3,2a]carbazole (Trz-BFCzCz)

6-(9H-carbazol-9-yl)-12H-benzofuro[3,2-a]carbazole (0.3 g, 0.71 mmol), 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine (0.43g, 1.1 mmol), Tri-*tert*-butylphosphine in 50 wt% toluene solution (0.37 ml, 0.07 mmol), sodium tert-butoxide (0.14 g, 1.42 mmol), palladium(II) acetate (0.01 g, 0.04 mmol) were poured to two-neck RB flask. 1,4-Dioxane (5 ml) was poured to the RB flask and stirred with magnetic bar in reflux condition for 6 hours. Further work-up and purification processes were the same as those of 6-bromo-12H-benzofuro[3,2a]carbazole. 6-(9H-carbazol-9-yl)-12-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-12Hbenzofuro[3,2-a]carbazole was obtained as a product. (0.29 g, 62.6 % yield)

¹H NMR (500 MHz, DMSO-d₆) δ 9.19 – 9.14 (m, 1H), 8.89 – 8.80 (m, 3H), 8.45 (d, *J* = 7.8 Hz, 1H), 8.36 (d, *J* = 7.7 Hz, 1H), 8.16 – 8.11 (m, 1H), 7.79 – 7.74 (m, 1H), 7.73 – 7.67 (m, 2H), 7.56 – 7.52 (m, 1H), 7.49 – 7.40 (m, 3H), 7.37 – 7.33 (m, 1H), 7.31 – 7.27 (m, 1H), 7.26 (d, *J* = 8.2 Hz, 1H), 6.97 (dd, *J* = 11.8, 4.5 Hz, 1H), 6.02 (d, *J* = 7.8 Hz, 1H).

¹³C NMR (126 MHz, DMSO) δ 171.32, 170.29, 155.01, 151.51, 142.54, 141.79, 141.24, 136.00, 135.29, 134.84, 133.25, 130.61, 129.64, 129.58, 129.09, 128.83, 126.91, 126.30, 123.36, 123.21, 122.91, 122.71, 121.94, 121.39, 120.60, 120.56, 120.23, 120.01, 114.79, 111.69, 110.35, 110.02, 109.71.

HRMS (FAB+) m/z 729.2529 [(M+H)+]; Calcd. For C45H31N6, 729.2529.

9-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-9H-3,9'-bicarbazole (Trz-CzCz)

9H-3,9'-bicarbazole (0.5 g, 1.50 mmol), 2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine (0.87 g, 2.25 mmol), Tri-*tert*-butylphosphine in 50 wt% toluene solution (1.22 ml, 0.23 mmol), Sodium tert-butoxide (0.29 g, 3.00 mmol), Palladium(II) acetate (0.02 g, 0.08 mmol) were poured to two neck RB flask. 5ml of 1,4-dioxane was poured to RB flask and stirred with magnetic bar in reflux condition for 6 hours. Further work-up and purification processes were same as 6-bromo-12H-benzofuro[3,2-a]carbazole purification.

9-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-9H-3,9'-bicarbazole was obtained as a product. (0.61 g, 71.3 % yield)

¹H NMR (500 MHz, DMSO) δ 9.09 (d, *J* = 8.5 Hz, 1H), 8.85 – 8.78 (m, 2H), 8.61 (d, *J* = 2.0 Hz, 1H), 8.41 (d, *J* = 7.9 Hz, 1H), 8.29 (d, *J* = 7.7 Hz, 1H), 8.09 (d, *J* = 8.5 Hz, 1H), 7.85 (d, *J* = 8.6 Hz, 1H), 7.78 – 7.63 (m, 4H), 7.57 (t, *J* = 7.7 Hz, 1H), 7.46 (t, *J* = 7.1 Hz, 1H), 7.43 – 7.35 (m, 2H), 7.31 (t, *J* = 7.4 Hz, 1H).

¹³C NMR (176 MHz, DMSO) δ 167.15, 166.14, 137.12, 136.54, 136.46, 134.86, 131.39, 130.70, 127.97, 126.07, 125.64, 124.30, 124.00, 122.16, 122.08, 121.15, 120.97, 120.09, 118.60, 118.44, 116.11, 115.98, 115.56, 114.93, 114.86, 106.29, 105.55, 105.06.
HRMS (FAB+) m/z 639.2429 [(M+H)+]; Calcd. For C45H31N6, 639.2429.

12-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-12H-benzofuro[3,2-a]carbazole (Trz-BFCz)

12H-benzofuro[3,2-a]carbazole (0.5 g, 1.94 mmol), 2-(4-bromophenyl)-4,6-diphenyl-1,3,5triazine (1.13 g, 2.91 mmol), Tri-*tert*-butylphosphine in 50 wt% toluene solution (1.54ml, 0.29 mmol), Sodium tert-butoxide (0.37 g, 3.88 mmol), Palladium(II) acetate (0.02 g, 0.10 mmol) were poured to two neck RB flask. 5ml of 1,4-dioxane was poured to RB flask and stirred with magnetic bar in reflux condition for 6 hours. Further work-up and purification processes were same as 6-bromo-12H-benzofuro[3,2-a]carbazole purification.

12-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-12H-benzofuro[3,2-a]carbazole was obtained as a product. (0.65 g, 68.3 % yield)

¹H NMR (500 MHz, CDCl₃) δ 9.11 – 9.05 (m, 1H), 8.82 (dd, *J* = 5.2, 3.2 Hz, 3H), 8.26 (d, *J* = 8.6 Hz, 1H), 8.19 (d, *J* = 7.6 Hz, 1H), 7.81 (dd, *J* = 6.1, 4.4 Hz, 1H), 7.66 – 7.52 (m, 6H), 7.45 – 7.35 (m, 2H), 7.28 – 7.23 (m, 1H), 7.16 (dd, *J* = 10.8, 6.0 Hz, 1H), 6.88 (td, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 172.12, 170.95, 156.83, 155.96, 143.41, 142.02, 136.52, 136.26, 136.04, 132.95, 130.78, 129.30, 129.26, 128.95, 128.44, 126.07, 125.51, 125.45, 124.37, 123.68, 122.80, 122.63, 121.18, 119.88, 119.75, 119.66, 111.30, 110.39, 109.21, 105.36.

HRMS (FAB+) m/z 564.1949 [(M+H)+]; Calcd. For C45H31N6, 564.1949.

	τ _p [c] [ns]	$rac{k_p}{[x10^7 s^{-1}]}$	τ _d [c] [μs]	k _d [x10 ³ s ⁻¹]	PLQY ^{[a] / [b]} [%]	k_{ISC} [x10 ⁷ s ⁻¹]	k _{RISC} [x10 ⁴ s ⁻¹]	k _r [x10 ⁷ s ⁻¹]	k _{nr} [x10 ³]
Trz-CzCz	14.2	7.04	106.28	9.41	33 ^[a] / 89 ^[b]	2.80	2.48	2.24	1.52
Trz-BFCz	12.9	7.75	36.71	27.2	$27^{[a]}/61^{[b]}$	5.64	4.65	2.11	14.6
Trz- BFCzCz	27.1	3.69	37.48	26.7	$28^{[a]} / 75^{[b]}$	2.68	6.37	1.01	9.20

Table S1. Calculated Rate constants of Trz-CzCz, Trz-BFCz and Trz-BFCzCz.

[a] PLQY measured in 20 wt% doped DPEPO film under air. [b] PLQY measured in 20 wt% doped DPEPO film under nitrogen. [c] Fluorescence decay lifetimes are measured in 20 wt% doped DPEPO film.

	ΔE _{st} [eV]	k _{RISC} [x10 ⁵ s ⁻¹]	CIE (x, y)	EQE ^{[a] / [b]} [%]	roll-off [%]	Ref.
Trz-BFCzCz	0.13	0.637	(0.18, 0.32)	23.3 / 13.1	43.8	This work
BisCz-Trz	0.06	-	(0.15, 0.20)	12.2 / 8.9	27.0	[1]
TrisCz-Trz	0.03	-	(0.15, 0.23)	11.3 / 9.2	18.6	[1]
DMAC2PTO	0.03	4.21	(0.155,0.107)	13.4 / -	-	[2]
TDBA- TPDICz	0.41	1.15	(0.14, 0.14)	16.9 / 3.5	79.3	[3]
MeMOC	0.25	16.8	(0.22, 0.42)	12.4 / 4.2	66.1	[4]
4CzCNPhPy	0.04	-	(0.15, 0.20)	13.7 / -	-	[5]
2SPAc-MPM	0.19	-	(0.17,0.29)	24.3 / 9.1	62.4	[6]
2SPAc-PPM	0.16	-	(0.18,0.32)	31.4 / 10.8	65.5	[6]
TrzBFCz	0.27	-	(0.15, 0.10)	18.0 / 8.0	55.6	[7]
TrzCNBFCz	0.13	-	(0.17, 0.31)	26.6 / 16.8	36.8	[7]
BTPAc	0.33	0.006	(0.18, 0.32)	19.0 / 1.3	93.2	[8]
BTPCNAc	0.15	4.89	(0.18, 0.41)	27.6 / 14.4	47.8	[8]
1PCTrz	0.16	0.397	(0.171 0.302)	26.7 / 11.7	56.2	[9]
2PCTrz	0.11	0.727	(0.182 0.348)	28.5 / 19.4	31.9	[9]
CzBM-2	0.01	-	(0.18, 0.24)	12.5 / -	-	[10]
CzPBM-3	0.15	-	(0.18, 0.19)	13.3 / -	-	[10]

Table S2. Summary of blue TADF OLEDs performances

[a] : EQE at maximum luminance [b] : EQE at 1000 cd/m²

Figure S1. Vertical transition probabilities in S1 state for (a) Trz-CzCz, (b) Trz-BFCz and (c) Trz-BFCzCz.

Figure S2. Natural transition orbital analysis of (a) Trz-CzCz, (b) Trz-BFCz and (c) Trz-BFCzZz.

	Singlet	Triplet			
	121	- <u>V</u> - <u>V</u>			
	Singlet	Triplet			
LUNTO					
	81.9%	17.3% 28.5% 23.9%			
HONTO		AN CONTRACT OF A			

Figure S3. CV data of Trz-CzCz, Trz-BFCz and Trz-BFCzCz

Figure S4. Ultraviolet-visible (UV-vis) absorption data of the emitters recorded using a dilute tetrahydrofuran solution (concentration of 1×10^{-5} M).

Figure S5. Device performances describing (a) relations between current density (J), voltage (V), and luminance (L) (b) EQE-Luminance relations and (c) wavelength at 10% doping concentration.

Figure S6. Device performances describing (a) relations between current density (J), voltage (V), and luminance (L) (b) EQE-Luminance relations and (c) wavelength at 30% doping concentration.

Figure S7. Mobility, Electric field plots of (a) HOD and (b) EOD of TADF molecules.

(c)

Figure S8. (a) ¹H NMR spectrum of Trz- BFCzCz (500 MHz, DMSO), (b) ¹³C NMR spectrum of Trz-BFCzCz (176 MHz, DMSO), (c) HRMS spectrum of Trz-BFCzCz

Figure S9. (a) ¹H NMR spectrum of Trz- CzCz (500 MHz, DMSO), (b) ¹³C NMR spectrum of Trz-CzCz (176 MHz, DMSO), (c) HRMS spectrum of Trz-CzCz

(b)

Figure S10. (a) ¹H NMR spectrum of Trz- BFCz (500 MHz, CDCl3), (b) ¹³C NMR spectrum of Trz-BFCz (126 MHz, CDCl₃), (c) HRMS spectrum of Trz-BFCz

Reference in supporting information

- 1. J. R. Cha, C. W. Lee and M. S. Gong, *Dyes Pigm.*, 2017, **140**, 399-406.
- 2. S. Q. Sun, R. D. Guo, Q. Zhang, X. L. Lv, P. P. Leng, Y. X. Wang, Z. Huang and L. Wang, *Dyes Pigm.*, 2020, **178**.
- 3. J. H. Maeng, D. H. Ahn, H. Lee, Y. H. Jung, D. Karthik, J. Y. Lee and J. H. Kwon, *Dyes Pigm.*, 2020, **180**.
- 4. H. Liu, J. F. Li, G. G. Li, B. Zhang, Q. Zhan, Z. W. Liu, C. J. Zhou, K. Li, Z. M. Wang and C. L. Yang, *Dyes Pigm.*, 2020, **180**.
- 5. X. D. Cao, X. P. Zhang, C. B. Duan, H. Xu, W. B. Yuan, Y. T. Tao and W. Huang, *Org. Electron.*, 2018, **57**, 247-254.
- 6. B. W. Li, Z. Y. Li, T. P. Hu, Y. Zhang, Y. Wang, Y. P. Yi, F. Y. Guo and L. C. Zhao, *J. Mater. Chem. C*, 2018, **6**, 2351-2359.
- 7. H. L. Lee, K. H. Lee, J. Y. Lee and W. P. Hong, *J. Mater. Chem. C*, 2019, **7**, 6465-6474.
- 8. C. S. Oh, H. L. Lee, W. P. Hong and J. Y. Lee, *J. Mater. Chem. C*, 2019, 7, 7643-7653.
- 9. K. H. Lee, S. O. Jeon, Y. S. Chung, M. Numata, H. Lee, E. K. Lee, E. S. Kwon, M. Sim, H. Choi and J. Y. Lee, *J. Mater. Chem. C*, 2020, **8**, 1736-1745.
- 10. P. Ganesan, D. G. Chen, W. C. Chen, P. Gnanasekaran, J. A. Lin, C. Y. Huang, M. C. Chen, C. S. Lee, P. T. Chou and Y. Chi, *J. Mater. Chem. C*, 2020, **8**, 4780-4788.