Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information For

2-Aryl-Perfluorobenzoxazoles: Synthesis, Fluorescence Properties

and Synthetic Application in Cubic Platinum Nanoparticles

Rong Wang,^{a,b,+} Hao Lu,^{b+} Mingpan Yan,^{b+} Mengfan Li,^{b+} Xiangyu Lv,^c Hongwen Huang,^b Arash Ghaderi,^d Takanori Iwasaki,^{c,e} Ablimit Abdukader,^{a,*} Nobuaki Kambeb,^{c,*} and Renhua Qiu^{a,b,c*}

- ^a State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, PR China.
- ^b College of Chemistry and Chemical Engineering, College of Material Science and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- ^c The Institute of Scientific and Industrial Research, Osaka University, Ibaraki-shi, Osaka 567-0047, Japan

^d Department of Chemistry, College of Sciences, University of Hormozgan, Bandar Abbas, 7916193145, Iran

^e Department of Chemistry and Biotechnology, The University of Tokyo, Tokyo 113-8656, Japan

Contents

1.General information
2. Experimental section
2.1 General procedure for the synthesis of perfluorobenzoxazole compounds $3a -$
3 x
2.2 Procedure for preparation of compound 4 4
3. Analysis data for product
3.1 Analysis Data for product $3a - 3x$
3.2 Analysis data for product 4a – 4l 15
4. X–ray Information of 3c (CCDC 2076932)
5. Fluorescence Spectra of Solvents Screening, Absorption of $3a - 3u$, $4a - 4l$ 22
5.1 The fluorescence emission spectra of solvents screening 3d 22
5.2 Absorption of $3a - 3u$, $4a - 4l$
5.3 The Fluorescence Emission Spectra of $3a - 3u$, $4a - 4l$ 25
6. Optical data table 3a – 3u , 4a – 4l 27
6.1 The measured photophysical properties of $3a - 3u$ 27
6.2 The measured photophysical properties of $4a - 4l$
7. Preparation and characterization of platinum nanomaterials of compound 41 and
CTAB
7.1 General preparation process of platinum nanomaterials of compound 4129
7.2 General preparation process of platinum nanomaterials of CTAB29
7.3 Transimission Electron Microscopic (TEM) characterization of platinum
nanomaterials of compound 4l and CTAB30
8. ¹ H, ¹³ C, ¹⁹ F NMR and HRMS spectra for the compound

1. General information

All reagents were purchased from commercial suppliers and used as received unless otherwise noted. The reaction of the product was observed by 254 nm ultraviolet radiation, and further analyzed by GC-MS. Finally, the product was separated and purified by column chromatography. Proton, carbon and fluorine nuclear magnetic.resonance spectrum (¹H, ¹³C and ¹⁹F NMR) were recorded on a Bruker-400 (400 MHz for ¹H NMR, 101 MHz for ¹³C NMR and 376 MHz for ¹⁹F NMR) spectrometer with solvent resonance as the internal standard (¹H NMR, CDCl₃ at 7.26 ppm, DMSO at 2.50 ppm; ¹³C NMR, CDCl₃ at 77.00 ppm, DMSO at 39.52 ppm. The chemical shift of the ¹H NMR spectrum is reported as δ , in parts per million (ppm), downfield of (CH₃)₄Si (δ 0.0) and relative to the signal of (CH₃)₄Si (δ 0.00, Singlet). Chemical shifts, multiplets (s = singlet, d = doublet, t = triplet, q = quadruple, m = multiplet) and coupling constants (*J*) have been reported in Hertz.

2. Experimental section

2.1 General procedure for the synthesis of perfluorobenzoxazole compounds 3a -

3x

Weight **1a** (22.3 mg, 0.12 mmol), **2** (0.1 mmol), $FeC_2O_4 \cdot (2H_2O)$ (5.4 mg, 30 mol%), NaH (4.8 mg, 0.2 mmol) in a 10.0 mL reaction tube equipped with a magnetic stir bar in the glove box, and then inject 1.0 mL of anhydrous DMSO. The reaction solution was heated to 150 °C and stirred for 18 hours under nitrogen. After the reaction finished, the reaction mixture was cooled to room temperature, and the aqueous phase was extracted 3 times with ethylacetate. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel and eluted with petroleum ether to obtain crude compound **3**. The crude product was separated by GPC (gel permeation chromatography) to obtain the main compound.

2.2 Procedure for preparation of compound 4

The general process 1: The mixture of 3d (56.4 mg, 0.2 mmol), Alkyl iodide (0.4 mmol), K_2CO_3 (55.2 mg, 0.4 mmol) were added in the Schlenk tube of 10.0 mL equipped with a magnetic stir bar, then inject 2.0 mL of anhydrous DMF. The reaction solution was heated to 120 °C and stirred for 12 hours under nitrogen. After the reaction finished, the reaction mixture was cooled to room temperature and extracted with ethylacetate (3 × 5.0 mL). The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel and eluted with petroleum ether / ethylacetate (100:1, v/v) to afford the compound 4. The crude product was separated by GPC gel permeation chromatography to obtain the main compound 4.

The general process 2: The mixture of 3d (56.4 mg, 0.2 mmol), Alkyl iodide (0.4 mmol), Cs_2CO_3 (112.4mg, 0.4 mmol) were added in the Schlenk tube of 10.0 mL equipped with a magnetic stir bar, then inject 2.0 mL of anhydrous DMF. The reaction solution was heated to 120 °C and stirred for 12 hours under nitrogen. After the reaction finished, the reaction mixture was cooled to room temperature and extracted with ethylacetate (3 × 5.0 mL), The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel and eluted with petroleum ether / ethylacetate (100:1, v/v) to afford the

The general process 1

compound **4**. The crude product was separated by GPC (gel permeation chromatography) to obtain the main compound **4**.

3. Analysis data for product

3.1 Analysis Data for product 3a – 3x

Because of the magnetic properties of fluorine nucleus, the exact assignment of all carbons bearing fluorine were not possible due to the large C-F spin-spin splitting. 4,5,6,7-tetrafluoro-2-(*p*-tolyl)benzo[*d*]oxazole (**3a**)

The compound was prepared according to the procedure mentioned above. The title compound was obtained as a white solid, 72% yield. MP: 168 - 170 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 7.8 Hz, 2H), 7.35 (d, *J* = 7.8 Hz, 2H), 2.45 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -151.31 – -151.84 (m), -158.81 – -159.16 (m), -159.84 (t, *J* = 20.0 Hz), -161.80 (t, *J* = 19.9 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 143.6, 129.9, 128.0, 122.6, 21.7. HRMS-ESI (m/z): calcd for C₁₄H₈NOF₄, [M+H]: 282.0542; found 282.0539.

4,5,6,7-tetrafluoro-2-phenylbenzo[*d*]oxazole (**3b**)

The compound was prepared according to the procedure mentioned above. The title compound was obtained as a white solid, 73% yield. MP: 105 - 107 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 7.6 Hz, 2H), 7.62 -7.53 (m, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -150.54 - -151.72 (m), -158.39 - -159.02 (m), -159.34 (t, J = 19.9 Hz), - 161.53 (t, J = 19.8 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 165.0, 132.7, 129.1, 128.1, 125.4. HRMS-ESI (m/z): calcd for C₁₃H₆NOF₄, [M+H]: 268.0386; found 268.0382.

4,5,6,7-tetrafluoro-2-(4-methoxyphenyl)benzo[*d*]oxazole (3c)

The compound was prepared according to the procedure mentioned above. The title compound was obtained as a white solid, 60% yield. MP: 125 - 127 °C. ¹H NMR (400 MHz, DMSO) δ 8.14 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 3.88 (s, 3H). ¹⁹F NMR (376 MHz, DMSO) δ -153.08 – 153.18 (m), -159.05 – -159.18 (m), -161.45 (t, *J* = 21.4 Hz), -163.14 (t, *J* = 21.2 Hz). ¹³C NMR (101 MHz, DMSO) δ 165.2, 163.5, 130.3, 117.3, 115.4, 56.1. HRMS-ESI (m/z): calcd for C₁₄H₈NO₂F₄, [M+H]: 298.0491; found, 298.0493.

2-(perfluorobenzo[d]oxazol-2-yl)aniline (3d)

The compound was prepared according to the procedure mentioned above. The title compound was obtained as a white solid, 72% yield. MP: 213 - 215 °C. ¹H NMR (400 MHz, DMSO) δ 7.90 (s, 1H), 7.38 (s, 1H), 7.11 (s, 2H), 6.98 (s, 1H), 6.74 (s, 1H). ¹⁹F NMR (376 MHz, DMSO) δ -153.42 (t, *J* = 17.5 Hz), -159.43 (t, *J* = 17.0 Hz), -161.68 (t, *J* = 20.8 Hz), -163.27 (t, *J* = 20.4 Hz). ¹³C NMR (101 MHz, DMSO) δ 165.3, 149.7, 134.2, 128.7, 116.8, 116.1, 104.8. HRMS-ESI (m/z): calcd for C₁₃H₇N₂OF₄, [M+H]: 283.0495; found, 283 .0494.

3-(4,5,6,7-tetrafluoro-5,6-dihydrobenzo[*d*]oxazol-2-yl)aniline (3e)

The compound was prepared according to the procedure mentioned above. The title compound was obtained as a white solid, 64% yield. MP: 184 - 186 °C. ¹H NMR (400 MHz, DMSO) δ 7.41 (s, 1H), 7.31 (d, *J* = 7.6 Hz, 1H), 7.25 (t, *J* = 7.8 Hz, 1H), 6.87 - 6.78 (m, 1H), 5.59 (s, 2H). ¹⁹F NMR (376 MHz, DMSO) δ -152.89 - -152.99 (m), - 159.01 - -159.11 (m), -160.97 (t, *J* = 21.5 Hz), -163.02 (t, *J* = 21.3 Hz). ¹³C NMR (101 MHz, DMSO) δ 165.8, 150.0, 130.4, 125.5, 118.7, 115.3, 112.6. HRMS-ESI (m/z): calcd for C₁₃H₇N₂OF₄, [M+H]: 283.0495; found, 283.0494.

The compound was prepared according to the procedure mentioned above. The title compound was obtained as a white solid, 56% yield. MP: 190 - 192 °C.¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.9 Hz, 2H), 6.76 (d, J = 8.0 Hz, 2H), 4.16 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -152.13 – -153.26 (m), -159.24 – -159.91 (m), -161.33 (t, J = 20.0 Hz), -162.52 (t, J = 20.0 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 160.5, 150.7, 130.0, 114.6. One carbon was lost due to overlap. HRMS-ESI (m/z): calcd for C₁₃H₇N₂OF₄, [M+H]: 283.0495; found, 283.0493.

4,5,6,7-tetrafluoro-2-(3-(trifluoromethyl)phenyl)benzo[*d*]oxazole(**3g**)

The compound was prepared according to the procedure mentioned above. The title compound was obtained as a white solid, 73% yield. MP: 89 - 91 °C. ¹H NMR (400

MHz, DMSO) δ 8.52 (d, J = 7.8 Hz, 1H), 8.44 (s, 1H), 8.10 (d, J = 7.7 Hz, 1H), 7.91 (t, J = 7.8 Hz, 1H). ¹⁹F NMR (376 MHz, DMSO) δ -61.57 (s), -152.15 (dd, J = 21.0, 16.4 Hz), -158.50 (dd, J = 21.3, 16.4 Hz), -159.38 (t, J = 21.3 Hz), -162.07 (t, J = 21.1 Hz). ¹³C NMR (101 MHz, DMSO) δ 131.8, 131.0, 125.8, 124.0 (q, J = 3.7 Hz). HRMS-ESI (m/z): calcd for C₁₄H₅NOF₇, [M+H]: 336.0259; found, 336.0258.

4,5,6,7-tetrafluoro-2-(4-(trifluoromethyl)phenyl)benzo[d]oxazole (**3h**)

The compound was prepared according to the procedure mentioned above. The title compound was obtained as a white solid, 75% yield. MP: 104 - 106 °C. ¹H NMR (400 MHz, DMSO) δ 8.37 (d, *J* = 7.9 Hz, 2H), 7.98 (d, *J* = 8.0 Hz, 2H). ¹⁹F NMR (376 MHz, DMSO) δ -61.90 (s), -152.02 - 152.11 (m), -158.29 - -158.80 (m), -159.27 (t, *J* = 21.2 Hz), -162.10 (t, *J* = 21.0 Hz). ¹³C NMR (101 MHz, DMSO) δ 163.58 (s), 132.85 (q, *J* = 32.4 Hz), 129.06 (s), 128.78 (s), 126.84 (q, *J* = 3.7 Hz), 124.1 (q, *J* = 273.7 Hz). HRMS-ESI (m/z): calcd for C₁₄H₅NOF₇, [M+H]: 336.0259; found 336.0264.

2-(4-chlorophenyl)-4,5,6,7-tetrafluorobenzo[*d*]oxazole (3i)

The compound was prepared according to the procedure mentioned above. The title compound was obtained as a white solid, 79% yield. MP: 124 - 126 °C. ¹H NMR (400 MHz, DMSO) δ 8.22 (d, *J* = 7.9 Hz, 2H), 7.72 (d, *J* = 7.9 Hz, 2H). ¹⁹F NMR (376 MHz, DMSO) δ -152.38 - 152.49 (m), -157.95 - -158.99 (m), -159.98 (t, *J* = 21.3 Hz), - 162.41 (t, *J* = 21.2 Hz). ¹³C NMR (101 MHz, DMSO) δ 164.2, 138.5, 130.2, 130.1, 124.1. HRMS-ESI (m/z): calcd for C₁₃H₅NOF₄Cl, [M+H]: 301.9996; found, 301.9999.

2-(3-bromophenyl)-4,5,6,7-tetrafluorobenzo[d]oxazole (3j)

The compound was prepared according to the procedure A. The title compound was obtained as a white solid, 71% yield. MP: 109 - 111 °C. ¹H NMR (400 MHz, DMSO) δ 8.23 (s, 1H), 8.14 (d, *J* = 7.8 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.54 (t, *J* = 7.8 Hz, 1H). ¹⁹F NMR (376 MHz, DMSO) δ -152.16 – 152.26 (m), -158.26 – -158.74 (m), -159.58 (t, *J* = 21.3 Hz), -162.19 (t, *J* = 21.2 Hz). ¹³C NMR (101 MHz, DMSO) δ 163.5, 136.2, 132.2, 130.4, 127.3, 123.0. One carbon was lost due to overlap. HRMS-ESI (m/z): calcd for C₁₃H₅NOF₄Br, [M+H]: 345.9491; found, 345.9493.

2-(4-bromophenyl)-4,5,6,7-tetrafluorobenzo[d]oxazole (3k)

The compound was prepared according to the procedure mentioned above. The title compound was obtained as a white solid, 76% yield. MP: 152 - 153 °C. ¹H NMR (400 MHz, DMSO) δ 8.15 (d, *J* = 7.7 Hz, 2H), 7.86 (d, *J* = 7.8 Hz, 2H). ¹⁹F NMR (376 MHz, DMSO) δ -152.37 - -152.47 (m), -158.43 - -158.94 (m), -159.94 (t, *J* = 21.4 Hz), - 162.39 (t, *J* = 21.2 Hz). ¹³C NMR (101 MHz, DMSO) δ 163.8, 132.6, 129.7, 127.0, 123.9. HRMS-ESI (m/z): calcd for C₁₃H₅NOF₄Br, [M+H]: 345.9491; found 345.9490.

4,5,6,7-tetrafluoro-2-(naphthalen-2-yl)benzo[d]oxazole (3l)

The compound was prepared according to the procedure mentioned above. The title compound was obtained as a white solid, 69% yield. MP: 235 - 237 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.82 (s, 1H), 8.30 (d, *J* = 8.6 Hz, 1H), 8.06 – 7.98 (m, 2H), 7.93 (d, *J* = 7.8 Hz, 1H), 7.69 – 7.55 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -150.84 – -151.47 (m), -158.47 – -158.96 (m), -159.24 (t, *J* = 19.9 Hz), -161.43 (t, *J* = 19.8 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 135.2, 132.8, 129.2, 129.1, 129.0, 128.6, 128.0, 127.3, 123.8, 122.6. HRMS-ESI (m/z): calcd for C₁₇H₈NOF₄, [M+H]: 318.0542; found 318.0544. 2-(3,4-difluorophenyl)-4,5,6,7-tetrafluorobenzo[*d*]oxazole (**3m**)

The compound was prepared according to the procedure mentioned above. The title compound was obtained as a white solid, 63% yield. MP: 90 - 92 °C. ¹H NMR (400 MHz, DMSO) δ 8.29 – 8.19 (m, 1H), 8.07 (s, 1H), 7.72 (q, 9.0 Hz, 1H). ¹⁹F NMR (376 MHz, DMSO) δ -130.94 – -131.03 (m), -135.52 – -136.88 (m), -152.23 – -152.33 (m), -157.34 – -158.95 (m), -159.77 (t, *J* = 21.3 Hz), -162.29 (t, *J* = 21.1 Hz). ¹³C NMR (101 MHz, DMSO) δ 162.7, 152.4 (dd, *J* = 254.0, 12.3 Hz), 149.7 (dd, *J* = 234.4, 14.0 Hz), 125.6 (dd, *J* = 7.8, 3.6 Hz), 122.1 (dd, *J* = 6.8, 3.4 Hz), 119.1 (d, *J* = 18.2 Hz), 117.2 (d, *J* = 19.9 Hz). HRMS-ESI (m/z): calcd for C₁₃H₄NOF₆, [M+H]: 304.0197; found, 304.0197.

5-methyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**3n**)

The compound was prepared according to the procedure mentioned above. The title compound was obtained as a white solid, 65% yield. MP: 195 - 197 °C. ¹H NMR (400 MHz, DMSO) δ 7.70 (d, J = 8.2 Hz, 1H), 6.96 (s, 2H), 6.70 (s, 1H), 6.50 (d, J = 8.2 Hz, 1H), 2.24 (s, 3H). ¹⁹F NMR (376 MHz, DMSO) δ -153.63 – 153.73 (m), -158.83 – -

160.41 (m), -162.20 (t, J = 21.4 Hz), -163.54 (t, J = 21.2 Hz). ¹³C NMR (101 MHz, DMSO) δ 164.9, 149.2, 144.1, 128.1, 117.2, 116.0, 102.1, 21.3. HRMS-ESI (m/z): calcd for C₁₄H₉N₂OF₄, [M+H]: 297.0651; found, 297.0649.

4-methoxy-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**30**)

The compound was prepared according to the procedure mentioned above. The title compound was obtained as a white solid, 62% yield. MP: 71 - 72 °C. ¹H NMR (400 MHz, DMSO) δ 7.26 (s, 1H), 7.04 (d, *J* = 9.0 Hz, 1H), 6.90 (d, *J* = 9.0 Hz, 1H), 6.74 (s, 2H), 3.75 (s, 3H). ¹⁹F NMR (376 MHz, DMSO) δ -153.43 (dd, *J* = 21.0, 16.1 Hz), -158.80 - -159.52 (m), -161.66 (t, *J* = 21.5 Hz), -163.21 (t, *J* = 21.2 Hz). ¹³C NMR (101 MHz, DMSO) δ 164.7, 149.7, 144.3, 123.4, 118.2, 109.3, 103.8, 55.5. HRMS-ESI (m/z): calcd for C₁₄H₉N₂O₂F₄, [M+H]: 313.0600; found 313.0602.

5-chloro-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**3p**)

The compound was prepared according to the procedure mentioned above. The title compound was obtained as a white solid, 71% yield. MP: 181 - 182 °C. ¹H NMR (400 MHz, DMSO) δ 7.77 (s, 1H), 7.18 (s, 2H), 6.92 (s, 1H), 6.64 (s, 1H). ¹⁹F NMR (376 MHz, DMSO) δ -152.81 – -153.53 (m), -159.05 – -159.61 (m), -161.23 (t, *J* = 20.8 Hz), -163.01 (t, *J* = 20.8 Hz). ¹³C NMR (101 MHz, DMSO) δ 163.9, 149.8, 138.3, 130.0, 115.6, 114.9, 103.4. HRMS-ESI (m/z): calcd for C₁₃H₆N₂OF₄Cl, [M+H]: 317.0105; found, 317.0104.

2-chloro-5-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**3q**)

The compound was prepared according to the procedure mentioned above. The title compound was obtained as a white solid, 62% yield. MP: 205 - 207 °C. ¹H NMR (400 MHz, DMSO) δ 7.67 (s, 1H), 7.44 (d, *J* = 8.2 Hz, 1H), 7.34 (d, *J* = 8.2 Hz, 1H), 5.83 (s, 2H). ¹⁹F NMR (376 MHz, DMSO) δ -152.79 (dd, *J* = 21.0, 16.3 Hz), -158.19 - 159.40 (m), -160.58 (t, *J* = 21.4 Hz), -162.78 (t, *J* = 21.1 Hz). ¹³C NMR (101 MHz, DMSO) δ 164.4, 145.6, 130.2, 123.9, 121.5, 115.6, 113.7. HRMS-ESI (m/z): calcd for C₁₃H₆N₂OF₄Cl, [M+H]: 317.0105; found, 317.0107.

4-chloro-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**3r**)

The compound was prepared according to the procedure mentioned above. The title compound was obtained as a white solid, 76% yield. MP: 182 - 184 °C. ¹H NMR (400 MHz, DMSO) δ 7.75 (s, 1H), 7.33 (d, *J* = 9.0 Hz, 1H), 7.17 (s, 2H), 6.95 (d, *J* = 8.9 Hz, 1H). ¹⁹F NMR (376 MHz, DMSO) δ -153.01 (dd, *J* = 21.0, 16.1 Hz), -158.79 – -159.46 (m), -160.88 (t, *J* = 21.4 Hz), -162.80 (t, *J* = 21.2 Hz). ¹³C NMR (101 MHz, DMSO) δ 163.5, 147.9, 133.4, 126.8, 118.8, 118.3, 105.2. HRMS-ESI (m/z): calcd for C₁₃H₆N₂OF₄Cl, [M+H]: 317.0105; found, 317.0105.

4-fluoro-2-(perfluorobenzo[d]oxazol-2-yl)aniline (3s)

The compound was prepared according to the procedure mentioned above. The title compound was obtained as a white solid, 60% yield. MP: 179 - 181 °C.¹H NMR (400

MHz, DMSO) δ 7.50 (d, J = 9.3 Hz, 1H), 7.23 (t, J = 7.7 Hz, 1H), 6.93 (s, 3H). ¹⁹F NMR (376 MHz, DMSO) δ -127.27 – -129.70 (m), -153.13 (dd, J = 21.0, 16.1 Hz), - 158.99 – -159.35 (m), -161.05 (t, J = 21.3 Hz), -162.93 (t, J = 21.1 Hz). ¹³C NMR (101 MHz, DMSO) δ 163.8, 152.9 (d, J = 231.8 Hz), 146.1, 121.9 (d, J = 23.5 Hz), 118.0 (d, J = 7.4 Hz), 112.5 (d, J = 24.3 Hz), 103.7 (d, J = 8.1 Hz). HRMS-ESI (m/z): calcd for C₁₃H₆N₂OF₅, [M+H]: 301.0400; found, 301.0398.

4-bromo-2-(perfluorobenzo[d]oxazol-2-yl)aniline (3t)

The compound was prepared according to the procedure mentioned above. The title compound was obtained as a white solid, 64% yield. MP: 190 - 192 °C. ¹H NMR (400 MHz, DMSO) δ 7.90 – 7.64 (m, 1H), 7.48 – 7.28 (m, 1H), 7.13 (s, 2H), 6.84 (d, *J* = 8.5 Hz, 1H). ¹⁹F NMR (376 MHz, DMSO) δ -152.95 (dd, *J* = 20.7, 16.4 Hz), -158.62 – 159.30 (m), -160.83 (t, *J* = 21.3 Hz), -162.74 (t, *J* = 21.1 Hz). ¹³C NMR (101 MHz, DMSO) δ 163.2, 148.1, 135.9, 129.5, 118.4, 105.6. One carbon was lost due to overlap. HRMS-ESI (m/z): calcd for C₁₃H₆N₂OF₄Br, [M+H]: 360.9600; found, 360.9601.

5-nitro-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**3u**)

The compound was prepared according to the procedure mentioned above. The title compound was obtained as a yellow solid, 58% yield. MP: 202 - 204 °C. ¹H NMR (400 MHz, DMSO) δ 8.13 (d, *J* = 8.8 Hz, 1H), 7.80 (s, 1H), 7.54 (s, 2H), 7.42 (d, *J* = 8.6 Hz, 1H). ¹⁹F NMR (376 MHz, DMSO) δ -152.36 (dd, *J* = 21.0, 16.3 Hz), -158.45 – -159.16 (m), -159.88 (t, *J* = 21.4 Hz), -162.38 (t, *J* = 21.1 Hz). ¹³C NMR (101 MHz, DMSO) δ 163.1, 150.3, 149.3, 130.4, 110.6, 109.1. One carbon was lost due to overlap. HRMS-ESI (m/z): calcd for C₁₃H₆N₃O₃F₄, [M+H]: 328.0345; found, 328.0344.

2-(perfluorobenzo[*d*]oxazol-2-yl)phenol (**3**v)

The compound was prepared according to the procedure mentioned above. The title compound was obtained as a white solid, 59% yield. MP: 222 - 224 °C. ¹H NMR (400 MHz, DMSO) δ 10.92 (s, 1H), 7.81 (d, *J* = 7.6 Hz, 1H), 7.68 (t, *J* = 7.6 Hz, 1H), 7.44 – 7.37 (m, 2H). ¹⁹F NMR (376 MHz, DMSO) δ -150.15 (dd, *J* = 23.2, 6.8 Hz), -158.66 (dd, *J* = 23.2, 6.8 Hz), -161.73 (t, *J* = 23.0 Hz), -162.43 (t, *J* = 22.9 Hz). ¹³C NMR (101 MHz, DMSO) δ 164.9, 158.1, 135.0, 132.0, 126.7, 125.1, 120.4. HRMS-ESI (m/z): calcd for C₁₃H₆NO₂F₄, [M+H]: 284.0335; found, 284.0331.

4-bromo-2-(perfluorobenzo[*d*]oxazol-2-yl)phenol (**3**w)

The compound was prepared according to the procedure mentioned above. The title compound was obtained as a white solid, 54% yield. MP: 226 - 228 °C. ¹H NMR (400 MHz, DMSO) δ 11.06 (s, 1H), 8.03 – 7.73 (m, 2H), 7.35 (d, *J* = 8.5 Hz, 1H). ¹⁹F NMR (376 MHz, DMSO) δ -149.84 (dd, *J* = 23.1, 6.7 Hz), -158.29 (dd, *J* = 23.2, 6.8 Hz), - 161.37 (t, *J* = 23.0 Hz), -162.04 (t, *J* = 23.0 Hz). ¹³C NMR (101 MHz, DMSO) δ 163.5, 157.2, 137.4, 134.1, 127.2, 122.9, 118.5. HRMS-ESI (m/z): calcd for C₁₃H₅NO₂F₄Br, [M+H]: 361.9440; found, 361.9450.

4,5,6,7-tetrafluoro-2-(pyridin-2-yl)benzo[d]oxazole (**3x**)

The compound was prepared according to the procedure mentioned above. The title compound was obtained as a white solid, 51% yield. MP: 101 - 103 °C. ¹H NMR (400 MHz, DMSO) δ 8.21 (s, 2H), 7.71 (s, 2H). ¹³C NMR (101 MHz, DMSO) δ 163.7, 156.7, 138.0, 129.7, 129.6, 123.6. ¹⁹F NMR (376 MHz, DMSO) δ -152.23 - -152.55 (m), - 158.56 - -159.03 (m), -160.00 (t, *J* = 20.1 Hz), -162.43 (t, *J* = 20.6 Hz). HRMS-ESI (m/z): calcd for C₁₂H₅N₂OF₄, [M+H]: 269.0338; found, 269.0339.

3.2 Analysis data for product 4a - 4l

N-methyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (4a)

The representative **general procedure 1** mentioned above was followed. The title compound was obtained as a white solid, 56% yield. MP: 212 - 215 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.0 Hz, 1H), 7.93 (s, 1H), 7.43 (t, *J* = 7.7 Hz, 1H), 6.92 - 6.44 (m, 2H), 3.07 (d, *J* = 3.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -152.17 - -152.31 (m), -158.82 - -159.55 (m), -160.51 (t, *J* = 20.1 Hz), -162.24 (t, *J* = 19.9 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 149.5, 134.2, 129.3, 115.3, 110.8, 106.1, 29.8. HRMS-ESI (m/z): calcd for C₁₄H₉N₂OF₄, [M+H]: 297.0651; found 297.0657.

N-ethyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**4b**)

The representative **general procedure 1** mentioned above was followed. The title compound was obtained as a white solid, 60% yield. MP: 159 - 161 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.9 Hz, 1H), 7.92 (s, 1H), 7.39 (t, *J* = 7.7 Hz, 1H), 6.78 (d, *J* = 8.5 Hz, 1H), 6.71 (t, *J* = 7.4 Hz, 1H), 3.63 – 3.00 (m, 2H), 1.41 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -151.87 – -153.49 (m), -158.98 – -159.75 (m), -160.65 (t, *J* = 20.1 Hz), -162.38 (t, *J* = 19.9 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 165.2, 148.6, 134.1, 129.3, 115.1, 111.2, 105.8, 37.6, 14.5. HRMS-ESI (m/z): calcd for C₁₅H₁₁N₂OF₄, [M+H]: 311.0808; found 311.0815.

N-butyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (4c)

The representative **general procedure 2** mentioned above was followed. The title compound was obtained as a white solid, 48% yield. MP: 98 - 100 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.8 Hz, 2H), 7.39 (t, *J* = 7.7 Hz, 1H), 6.79 (d, *J* = 8.5 Hz, 1H), 6.71 (t, *J* = 7.4 Hz, 1H), 3.33 (dd, *J* = 12.1, 6.0 Hz, 2H), 1.85 – 1.68 (m, 2H), 1.55 (d, *J* = 7.5 Hz, 2H), 1.02 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -151.94 – -153.04 (m), -158.74 – -159.88 (m), -160.68 (t, *J* = 20.1 Hz), -162.40 (t, *J* = 19.9 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 148.8, 134.1, 129.3, 115.0, 111.2, 105.8, 42.8, 31.1, 20.3, 13.8. HRMS-ESI (m/z):calcd for C₁₇H₁₅N₂OF₄, [M+H]: 339.1121; found, 339.1123.

N-pentyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**4d**)

The representative general procedure 2 mentioned above was followed. The title

compound was obtained as a white solid, 44% yield. MP: 71 - 73 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 7.7 Hz, 1H), 6.77 (d, *J* = 8.5 Hz, 1H), 6.70 (t, *J* = 7.5 Hz, 1H), 3.31 (dd, *J* = 11.7, 5.6 Hz, 2H), 1.87 – 1.72 (m, 2H), 1.54 – 1.42 (m, 4H), 0.96 (t, *J* = 6.9 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -152.02 – -152.83 (m), -159.00 – -159.90 (m), -160.71 (t, *J* = 20.1 Hz), -162.42 (t, *J* = 19.9 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 148.8, 134.0, 129.3, 115.0, 111.2, 105.8, 43.0, 29.4, 28.8, 22.5, 14.0. HRMS-ESI (m/z): calcd for C₁₈H₁₇N₂OF₄, [M+H]: 353.1277; found, 353.1277.

N-hexyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (4e)

The representative **general procedure 2** mentioned above was followed. The title compound was obtained as a white solid, 41% yield. MP: 66 - 68 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 7.6 Hz, 2H), 7.39 (t, J = 7.7 Hz, 1H), 6.78 (d, J = 8.5 Hz, 1H), 6.71 (t, J = 7.4 Hz, 1H), 3.63 – 3.08 (m, 2H), 1.87 – 1.71 (m, 2H), 1.60 – 1.48 (m, 2H), 1.38 (s, 4H), 0.91 (t, J = 11.4 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -152.22 – 153.13 (m), -158.42 – -159.68 (m), -160.69 (t, J = 20.1 Hz), -162.39 (t, J = 19.9 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 148.8, 134.1, 129.3, 115.0, 111.2, 105.8, 43.0, 31.6, 29.0, 26.8, 22.6, 14.0. HRMS-ESI (m/z): calcd for C₁₉H₁₉N₂OF₄, [M+H]: 367.1434; found, 367.1431.

N-heptyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (4**f**)

The compound was prepared according to the procedure B. The title compound was obtained as a white solid, 46% yield. MP: 70 - 72 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10 - 7.82 (m, 2H), 7.39 - 7.30 (m, 1H), 6.71 (d, *J* = 8.5 Hz, 1H), 6.69 - 6.63 (m, 1H), 3.29 - 3.24 (m, 2H), 1.85 - 1.68 (m, 2H), 1.52 - 1.47 (m, 2H), 1.44 - 1.22 (m, 6H), 1.04 - 0.80 (m, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -152.66 (dd, *J* = 19.8, 16.6 Hz), -159.42 - -159.52 (m), -160.82 (dd, *J* = 26.1, 14.4 Hz), -162.16 - -163.33 (m). ¹³C NMR (101 MHz, CDCl₃) δ 165.1 (d, *J* = 2.4 Hz), 148.6, 133.9, 129.1, 114.9, 111.1, 105.6, 43.0, 31.8, 29.1, 29.0, 27.2, 22.6, 14.0. HRMS-ESI (m/z): calcd for C₂₀H₂₁N₂OF₄, [M+H]: 381.1590; found, 381.1583.

The representative **general procedure 2** mentioned above was followed. The title compound was obtained as a white solid, 50% yield. MP: 73 - 74 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (dd, J = 7.9, 1.4 Hz, 2H), 7.40 (dd, J = 11.4, 4.2 Hz, 1H), 6.79 (d, J = 8.5 Hz, 1H), 6.72 (t, J = 7.5 Hz, 1H), 3.32 (dd, J = 12.1, 6.9 Hz, 2H), 1.86 – 1.70 (m, 2H), 1.55 – 1.46 (m, 2H), 1.45 – 1.19 (m, 8H), 0.89 (t, J = 6.8 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -152.45 (dd, J = 19.8, 16.6 Hz), -159.01 – -159.87 (m), -160.63 (t, J = 20.1 Hz), -162.36 (t, J = 20.0 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 148.8, 134.1, 129.3, 115.0, 111.2, 105.8, 43.0, 31.8, 29.4, 29.3, 29.0, 27.2, 22.6, 14.1. HRMS-ESI(m/z): calcd for C₂₁H₂₃N₂OF₄, [M+H]: 395.1747; found, 395.1751.

N-nonyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**4h**)

The representative **general procedure 2** mentioned above was followed. The title compound was obtained as a white solid, 43% yield. MP: 79 - 80 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 6.7 Hz, 2H), 7.40 (t, J = 7.8 Hz, 1H), 6.79 (d, J = 8.5 Hz, 1H), 6.72 (t, J = 7.5 Hz, 1H), 3.32 (dd, J = 12.1, 6.8 Hz, 2H), 1.85 – 1.73 (m, 2H), 1.50 (dd, J = 15.3, 7.5 Hz, 2H), 1.34 – 1.21 (m, 10H), 0.88 (t, J = 6.6 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -152.46 (dd, J = 19.7, 16.6 Hz), -158.86 – -159.84 (m), -160.66 (t, J = 20.1 Hz), -161.48 – -162.65 (m). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 148.8, 134.1, 129.3, 115.0, 111.2, 105.8, 43.0, 31.9, 29.6, 29.4, 29.3, 29.0, 27.2, 22.7, 14.1. HRMS-ESI (m/z): calcd for C₂₂ H₂₅N₂OF₄, [M+H]: 409.1903; found, 409.1907.

The representative **general procedure 2** mentioned above was followed. The title compound was obtained as a white solid, 46% yield. MP: 74 - 76 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (dd, J = 7.9, 1.4 Hz, 2H), 7.40 (t, J = 7.2 Hz, 1H), 6.80 (d, J = 8.6 Hz, 1H), 6.72 (t, J = 7.5 Hz, 1H), 3.32 (dd, J = 12.1, 6.9 Hz, 2H), 1.84 – 1.73 (m, 2H), 1.55 – 1.45 (m, 2H), 1.28 (d, J = 11.8 Hz, 12H), 0.88 (t, J = 6.8 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -152.42 (dd, J = 19.9, 16.6 Hz), -158.38 – -159.94 (m), -160.63 (t, J = 20.1 Hz), -162.35 (t, J = 20.0 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 148.8, 134.1, 129.3, 115.0, 111.2, 105.8, 43.0, 31.9, 29.6, 29.6, 29.4, 29.3, 29.0, 27.2, 22.7, 14.1. HRMS-ESI (m/z): calcd for C₂₃H₂₇N₂OF₄, [M+H]: 423.2060; found, 423.2060.

N-dodecyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**4j**)

The representative **general procedure 2** mentioned above was followed. The title compound was obtained as a white solid, 47% yield. MP: 77 - 78 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 7.2 Hz, 2H), 7.42 (t, *J* = 7.7 Hz, 1H), 6.82 (d, *J* = 8.5 Hz, 1H), 6.74 (t, *J* = 7.4 Hz, 1H), 3.35 (d, *J* = 5.7 Hz, 2H), 1.85 – 1.80 (m, 2H), 1.54 – 1.50 (m, 2H), 1.29 (s, 16H), 0.90 (d, *J* = 6.6 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -152.00 – -153.21 (m), -159.13 – -159.68 (m), -160.68 (t, *J* = 20.1 Hz), -162.38 (t, *J* = 19.9 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 148.8, 134.1, 129.3, 115.0, 111.3, 105.9, 43.0, 31.9, 29.7, 29.6, 29.5, 29.4, 29.3, 29.1, 27.2, 22.7, 14.1. One carbon was lost due to overlap. HRMS-ESI (m/z): calcd for C₂₅H₃₁N₂OF₄, [M+H]: 451.2373; found, 451.2371.

N-hexadecyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**4**k)

The representative **general procedure 2** mentioned above was followed. The title compound was obtained as a white solid, 50% yield. MP: 66 - 68 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 7.5 Hz, 2H), 7.42 (t, J = 7.5 Hz, 1H), 6.82 (d, J = 8.5 Hz, 1H), 6.75 (t, J = 7.4 Hz, 1H), 3.35 (dd, J = 11.6, 5.9 Hz, 2H), 1.85 –1.78 (m, 2H), 1.62 – 1.47 (m, 6H), 1.28 (s, 20H), 0.90 (t, J = 6.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -151.73 – -152.77 (m), -159.04 – -159.79 (m), -160.68 (t, J = 20.1 Hz), -162.37 (t, J = 19.9 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 148.8, 134.1, 129.3, 115.0, 111.2, 105.8, 43.0, 32.2, 31.9, 29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 29.1, 29.0, 28.9, 27.2, 22.7, 14.1. HRMS-ESI (m/z): calcd for C₂₉H₃₉N₂OF₄, [M+H]: 507.2999; found, 507.2996.

N-octadecyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (41)

The representative **general procedure 2** mentioned above was followed. The title compound was obtained as a white solid, 47% yield. MP: 66 - 68 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 6.8 Hz, 2H), 7.40 (t, *J* = 7.4 Hz, 1H), 6.79 (d, *J* = 8.4 Hz, 1H), 6.72 (t, *J* = 6.9 Hz, 1H), 3.32 (d, *J* = 4.8 Hz, 2H), 2.50 (t, *J* = 6.8 Hz, 1H), 1.78 (d, *J* = 6.7 Hz, 2H), 1.53 (d, *J* = 15.6 Hz, 3H), 1.25 (s, 26H), 0.87 (d, *J* = 6.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -151.84 – -153.17 (m), -158.88 – -159.72 (m), -160.66 (t, *J* = 20.1 Hz), -162.36 (t, *J* = 19.9 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 148.8, 134.1, 129.3, 115.0, 111.3, 105.8, 43.0, 32.2, 31.9, 29.9, 29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 29.1, 29.0, 28.9, 27.2, 22.7, 14.1. One carbon was lost due to overlap. HRMS-ESI (m/z): calcd for C₃₁H₄₃N₂OF₄, [M+H]: 535.3312; found, 535.3315.

4. X-ray Information of 3c (CCDC 2076932)

Identification code	3c
Empirical formula	C ₁₄ H ₇ F ₄ NO ₂
Formula weight	297.21
Temperature/K	149.99(10)
Crystal system	triclinic
Space group	P-1
a/Å	5.9650(6)
b/Å	7.5856(11)
c/Å	13.5287(15)
a/o	82.212(11)
β/°	82.531(9)
$\gamma/^{\circ}$	88.960(10)
Volume/Å ³	601.36(13)
Z	2
$\rho_{calc}g/cm^3$	1.641
μ/mm ⁻¹	0.152
F(000)	300.0
Crystal size/mm ³	0.14 imes 0.12 imes 0.11
Radiation	Mo K α ($\lambda = 0.71073$)
2Θ range for data collection/	5.42 to 49.994
Index ranges	$-4 \le h \le 7, -9 \le k \le 8, -15 \le l \le 16$
Reflections collected	3832
Independent reflections	2113 [$R_{int} = 0.0219, R_{sigma} = 0.0424$]
Data/restraints/parameters	2113/7/191
Goodness-of-fit on F ²	1.079
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0417, wR_2 = 0.0957$
Final R indexes [all data]	$R_1 = 0.0586, wR_2 = 0.1060$
Largest diff. peak/hole / e Å-3	0.16/-0.22

Table 1 Crystal data and structure refinement for **3c**.

Figure S1. The Ellipsoid Contour % Probability Levels of 3c is 50%

5. Fluorescence Spectra of Solvents Screening, Absorption of 3a - 3u, 4a - 4l

5.1 The fluorescence emission spectra of solvents screening 3d

Figure S2 The Fluorescence Emission Spectra of **3d** in CH_2Cl_2 , CH_3CN , CH_3OH , DMF, DMSO, EA, Toluene, THF and Acetone at a concentration 12.5 µmol/L. Compound **3d** were choosed as the sample to screen solvents, such as CH_2Cl_2 , CH_3CN , CH_3OH , DMF, DMSO, EA, Toluene, THF and Acetone in 12.5 µmol/L. We found that EA is the best solvent for fluorescence emission. The data of the fluorescence emission was tested by HITACHI F7000 at room temperature.

Figure S3. The UV Absorption Spectra of 3a - 3u (12.5 µmol/L solution in EA) The data was tested by SHIMADZU UV 2000 at room temperature.

Figure S4. The UV Absorption Spectra of 4a - 4l (12.5 µmol/L solution in EA) The data was tested by SHIMADZU UV 2000 at room temperature.

Figure S5. The Fluorescence Emission Spectra of 3a – 3u

We controlled the UV absorbance of 3a - 3u between 0.025 and 0.050 in EA for fluorescence quantum yield by SHIMADZU UV 2000 at room temperature. Next, we tested the data of fluorescence emission when excited at their maximum absorption wavelength by HITACHI F7000.

Figure S6. The Fluorescence Emission Spectra of 4a - 4lWe controlled the UV absorbance of 4a - 4l between 0.025 and 0.050 in EA for fluorescence quantum yield by SHIMADZU UV 2000 at room temperature. Next, we tested the data of fluorescence emission when excited at their maximum absorption wavelength by HITACHI F7000.

6. Optical data table 3a – 3u, 4a – 4l

	Table S	2 . the Measured P	hotophysical Proper	ties of 3a – 3u	
Compound	Abs.	λmax(nm)	Emission(nm)	Fluorescent Area	$\Phi_{\rm F}(\%)$
3 a	0.044	286	362	13307.92	29
3b	0.048	281	362	5046.75	10
3c	0.032	296	372	8618.78	26
3d	0.03	370	444	30650.11	99
3 e	0.041	343	456	7078.79	17
3f	0.052	334	403	44735.56	83
3g	0.048	283	375	8262.31	17
3h	0.053	284	374	2937.43	5
3i	0.043	287	366	35258.74	79
3j	0.049	284	366	3335.17	7
3k	0.046	287	367	8822.08	19
31	0.043	310	388	12359.34	28
3m	0.051	283	367	14558.67	28
3n	0.049	363	440	30482.20	60
30	0.05	293	415	4962.12	10
3p	0.037	363	436	16217.65	42
3q	0.051	338	440	2615.98	5
3r	0.05	377	454	31092.74	60
3s	0.047	379	459	45030.85	93
3t	0.049	378	453	3544.35	7
<u>3u</u>	0.05	341	438	2358.99	5
Ref	0.044	345	465	26380.63	54.6

6.1 The measured photophysical properties of 3a – 3u

6.2 The measured photophysical properties of 4a - 4l

Compound	Abs.	$\lambda_{max}(nm)$	Emission(nm)	Fluorescent Area	$\Phi_{\rm F}(\%)$			
4 a	0.042	378	462	18608.72	43			
4b	0.05	384	461	33349.11	64			
4c	0.048	385	462	28689.65	58			
4d	0.044	385	462	25895.9	57			
4e	0.045	384	461	28489.16	61			
4f	0.051	384	462	27997.76	53			
4g	0.047	385	462	24382.84	50			
4h	0.054	389	462	38035.11	68			
4i	0.047	384	459	27571.52	57			
4j	0.043	389	462	33518.23	75			
4k	0.03	380	462	15657.16	50			
41	0.033	384	462	17239.47	50			
Ref	0.044	345	465	26380.63	54.6			

Table S3. the Measured Photophysical Properties of 4a – 4l

The calculation formula of quantum yield as follows:

In formula,s and r represent sample and reference respectively, F is the relative integrated fluorescence intensity, A is the absorbance, and n is the refractive index of the solvent.

7. Preparation and characterization of platinum nanomaterials of compound 4l and CTAB

7.1 General preparation process of platinum nanomaterials of compound 41

Experimental process: Weigh $Pt(acac)_2$ (5.0 mg) and **41** (26.2 mg) into a 30.0 mL reaction flask, then add 4.0 mL oleylamine, cap the bottle and sonicate it in an ultrasonic machine for 30 min until a uniform solution is formed (the ultrasonic temperature is controlled below 25 °C). After sonication is uniform, weigh 5.0 mg of tungsten hexacarbonyl into the reaction flask, tighten the cap and shake it lightly for a few times, then put it in a 165 °C oil bath for 2 h.

7.2 General preparation process of platinum nanomaterials of CTAB

Experimental process: Weigh $Pt(acac)_2$ (10.0 mg) and CTAB (75.0 mg) into a 30.0 mL reaction flask, add 4.0 mL oleylamine and close the cap, then sonicate in an ultrasonic machine for 30 min until a uniform solution is formed (the ultrasonic temperature is controlled below 25 °C). After sonication is uniform, weigh 10.0 mg tungsten hexacarbonyl into the reaction flask, tighten the cap and shake it lightly for a few times, then put it in a 165 °C oil bath for 2 h.

7.3 Transimission Electron Microscopic (TEM) characterization of platinum nanomaterials of compound 4l and CTAB

Figure S7 TEM images of uniform cubic platinum nanoparticles (**4**I) TEM sample preparation: Take 0.3 mL of the original solution into a 1.5 mL centrifuge tube, add 0.9 mL of n-hexane, sonicate for 5 min and centrifuge at 13000 r/min for 5 min to obtain a black precipitate. After the first centrifugation, remove the supernatant with a pipette, then add hexane:ethanol (2:1), sonicate for 5 min and then centrifuge at the same speed. Perform the above operation again and disperse the sample in hexane. Next, the transmission electron microscope (TEM) test of uniform cubic platinum (**4**I) nanoparticles was carried out on the JEM-2100 Plus instrument.

Figure S8 TEM images of platinum nanowire (CTAB)

TEM sample preparation: Take 0.3 mL of the original solution into a 1.5 mL centrifuge tube, add 0.9 mL of n-hexane, sonicate for 5 min and centrifuge at 13000 r/min for 5 min to obtain a black precipitate. After the first centrifugation, remove the supernatant with a pipette, then add hexane:ethanol (2:1), sonicate for 5 min and then centrifuge at the same speed. Perform the above operation again and disperse the sample in hexane. Next, the transmission electron microscope (TEM) test of platinum nanowires (CTAB) was carried out on the JEM-2100 Plus instrument.

8. ¹H, ¹³C, ¹⁹F NMR and HRMS spectra for the compound

4,5,6,7-tetrafluoro-2-(*p*-tolyl)benzo[*d*]oxazole (**3a**)

¹H NMR (400 MHz, CDCl₃)

¹⁹F NMR (376 MHz, CDCl₃)

4,5,6,7-tetrafluoro-2-phenylbenzo[*d*]oxazole (**3b**)

¹HNMR (400 MHz, CDCl₃)

Chemical Formula: C₁₃H₅F₄NO Molecular Weight: 267.1826

¹⁹F NMR (376 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 fl (ppm) HRMS spectra 0119 -4 104 (0.947) 1: TOF MS ES+ 4.01e3 268.0382 100-28 260.2096 270.3150 266 70 269.0461 672 272.9353 273.1739 275.1992 273 274 275 259, 192 269.2347 1595 262. 1677 261 263.2188 276.9272 270.3233 272 Ц 265,19 د الباد د 270 271 276 0 269 m/z 260 267 268 261 262 263 264 265 266
4,5,6,7-tetrafluoro-2-(4-methoxyphenyl)benzo[*d*]oxazole (**3c**)

2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**3d**)

3-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**3e**)

42

2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**3f**)

¹H NMR (400 MHz, DMSO)

8.0613 -7.2605 <6.7655 6.7456 -4.1629

NH:

Chemical Formula: C₁₃H₈F₄N₂O Molecular Weight: 282.1976

-152.5335 -152.5788 -152.5788 -152.5788 -159.5452 -159.5452 -159.5452 -161.2809 -161.3339 -161.3339 -161.3339 -161.3339 -162.5711

-150 -152 -154 -156 -158 -160 -162 -164 -166 fl (ppm)

4,5,6,7-tetrafluoro-2-(3-(trifluoromethyl)phenyl)benzo[*d*]oxazole(**3g**)

4,5,6,7-tetrafluoro-2-(4-(trifluoromethyl)phenyl)benzo[*d*]oxazole (**3h**)

2-(4-chlorophenyl)-4,5,6,7-tetrafluorobenzo[*d*]oxazole(**3i**)

2-(3-bromophenyl)-4,5,6,7-tetrafluorobenzo[*d*]oxazole (**3j**)

2-(4-bromophenyl)-4,5,6,7-tetrafluorobenzo[*d*]oxazole (**3**k)

HRMS spectra

4,5,6,7-tetrafluoro-2-(naphthalen-2-yl)benzo[*d*]oxazole (**3**I)

2-(3,4-difluorophenyl)-4,5,6,7-tetrafluorobenzo[*d*]oxazole (**3m**)

2-methyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**3n**)

¹H NMR (400 MHz, DMSO)

-2.5071 -2.2446

H₂N

Chemical Formula: C₁₄H₈F₄N₂O Molecular Weight: 296.2246

2-methoxy-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**30**)

2-chloro-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**3p**)

66

2-fluoro-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (3s)

2-bromo-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**3t**)

2-nitro-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**3u**)

¹H NMR (400 MHz, DMSO)

¹⁹F NMR (376 MHz, DMSO)

Chemical Formula: C₁₃H₅F₄N₃O₃ Molecular Weight: 327.1946

-152.3055 -152.3055 -152.3490 -152.3490 -152.3490 -158.8964 -158.8964 -158.8938 -159.8187 -159.8187 -159.8187 -159.8756 -162.3238 -162.3339 -162.4339

-150 -155 -160 -165 fl (ppm)

2-(perfluorobenzo[*d*]oxazol-2-yl)phenol (**3**v)

¹H NMR (400 MHz, DMSO)

¹⁹F NMR (376 MHz, DMSO)

2-bromo-2-(perfluorobenzo[*d*]oxazol-2-yl)phenol (**3**w)

¹H NMR (400 MHz, DMSO)

¹⁹F NMR (376 MHz, DMSO)

																_						
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
10	0	10	20	00	40	00	00	10	00	30	100	110	120	100	140	100	100	110	100	150	200	210
fl (ppm)																						
											(ppm)											

HRMS spectra

4,5,6,7-tetrafluoro-2-(pyridin-2-yl)benzo[*d*]oxazole (**3x**)

¹H NMR (400 MHz, DMSO)

¹⁹F NMR (376 MHz, DMSO)

80

N-methyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**4a**)

N-ethyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline(**4b**)

N-butyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**4c**)

¹H NMR (400 MHz, CDCl3)

N-pentyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**4d**)

N-hexyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**4e**)

N-heptyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**4f**)

¹H NMR (400 MHz, CDCl3)

N-octyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**4g**)

N-nonyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**4h**)

¹H NMR (400 MHz, CDCl₃)

Chemical Formula: C₂₂H₂₄F₄N₂O Molecular Weight: 408.4406

1,8218 1,7658 1,7658 1,7692 1,7692 1,7615 1,5315 1,5315 1,5315 1,5315 1,5315 1,5315 1,5315 1,13016 1,2519 0,0878 0,0878 0,0870

-3.3449 -3.3278 -3.3147 -3.3147

N-decyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (4i)

N-dodecyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (**4j**)

N-hexadecyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (4k)

102

N-octadecyl-2-(perfluorobenzo[*d*]oxazol-2-yl)aniline (4l)

