## **Electronic Supplementary Information**

## Strong Fermi-Level Pinning at Metal Contacts to Halide Perovskites

Kootak Hong,<sup>a,b</sup> Ki Chang Kwon,<sup>a</sup> Kyoung Soon Choi,<sup>c</sup> Quyet Van Le,<sup>d</sup> Seung Ju Kim,<sup>a</sup> Ji Su Han,<sup>a</sup> Jun Min Suh,<sup>a</sup> Soo Young Kim,<sup>e</sup>\* Carolin M. Sutter-Fella<sup>b</sup>\* and Ho Won Jang<sup>a</sup>\*

<sup>a</sup>Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea

<sup>b</sup>Joint Center for Artificial Photosynthesis, Chemical Sciences Division, Lawrence Berkeley National Laboratory, California 94720, United States

<sup>c</sup>National Research Facilities and Equipment Center, Korea Basic Science Institute, Daejeon 34133, Republic of Korea

<sup>d</sup>Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam <sup>e</sup>Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea

\*E-mail: sooyoungkim@korea.ac.kr, csutterfella@lbl.gov, hwjang@snu.ac.kr

## Method for fitting to estimate the pinning factor and estimation of the density of gap states, metal-induced gap states, and interfacial gap states

Based on the Schottky–Mott rule, Schottky barrier height ( $\phi_B$ ) at an ideal case of metal/n-type semiconductor is expressed as <sup>1</sup>

$$\phi_B = \phi_m - \chi \tag{1}$$

where  $\phi_B$  is the Schottky barrier height,  $\phi_m$  is the work function of metal, and  $\chi$  is the electron affinity of the semiconductor. However, for real applications, the  $\phi_B$  value can be deviated from the Schottky-Mott rule due to Fermi-level pinning originating from gaps states at the interface. By introducing a pinning factor (S) and charge neutrality level ( $\phi_{CNL}$ ), the effective  $\phi_B$  can be expressed using following equation.

$$\phi_B = S(\phi_m - \phi_{CNL}) + (\phi_{CNL} - \chi) = S\phi_m + b \tag{2}$$

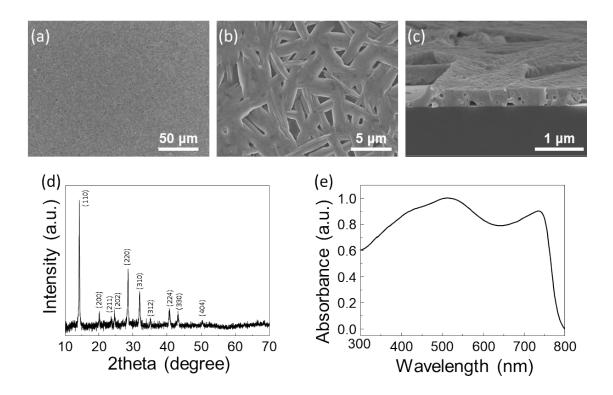
$$\phi_{CNL} = \frac{\chi + b}{1 - S} \tag{3}$$

By linear fitting of  $\phi_{B}$ - $\phi_{m}$  curve, we can derive the value of S. In addition, the pinning factor S can be expressed as follow according to the Sze model,<sup>2</sup>

$$S = \left(1 + \frac{q^2 D_g d}{\varepsilon_r \varepsilon_0}\right)^{-1} \tag{4}$$

$$d = \frac{h^2}{2\pi a m_0 E_g} \tag{5}$$

$$D_g = \frac{(1 - S)\varepsilon_r \varepsilon_o}{Sdq^2}$$
(6)


where q is the elementary charge,  $D_g$  is the density of gap states, d is the penetration depth.  $\varepsilon_r$  is the dielectric constant of the semiconductor,  $\varepsilon_0$  is the permittivity of the vacuum, h is the Planck constant, a is the lattice constant,  $m_0$  is the electron rest mass, and  $E_g$  is the band gap of the semiconductor. Here, we used the previously reported static dielectric constant for MAPbI<sub>3</sub> (24.1).<sup>3,4</sup> The d-value of 0.31 nm was obtained using the lattice constant value of approximately 1 nm (a  $\approx$  1 nm) because a corresponded to 0.8855 nm and c corresponded to 1.2659 nm for MAPbI<sub>3</sub>.<sup>5</sup> The  $D_g$  is estimated to be 6.75×10<sup>15</sup> eV<sup>-1</sup> cm<sup>-2</sup>.

Considering  $D_g = D_{\text{MIGS}} + D_{\text{IT}}$ , we also evaluated the  $D_{\text{MIGS}}$  and  $D_{\text{IT}}$  using the following equations.<sup>6</sup>

$$D_{MIGS} = \frac{2}{\pi a^2 E_g} \tag{7}$$

$$D_{IT} = D_g - D_{MIGS} \tag{8}$$

Using the above equations, the  $D_g$  and  $D_{\rm IT}$  at metal/MAPbI<sub>3</sub> interfaces are estimated to be  $4.16\times10^{13}$  and  $6.71\times10^{15}$  eV<sup>-1</sup> cm<sup>-2</sup>, respectively. It indicates that the interface trap states, rather than the metal-induced gap states, mainly cause the strong Fermi-level pinning at metal/MAPbI<sub>3</sub> interfaces.



**Fig. S1** (a,b) Plain-view and (c) cross-section view scanning electron images of MAPbI<sub>3</sub> thin films. (d) XRD pattern of the MAPbI<sub>3</sub> thin films. (e) UV-Vis absorption spectrum of MAPbI<sub>3</sub> thin films.

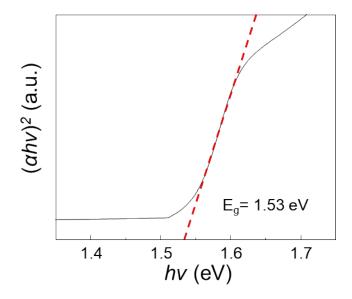



Fig. S2 Tauc plot of MAPbI<sub>3</sub> thin films.

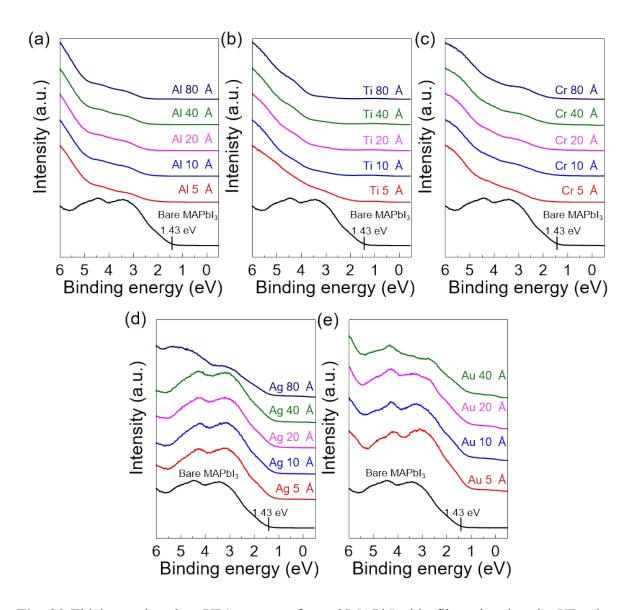



Fig. S3 Thickness depedent UPS sepctra of metal/MAPbI<sub>3</sub> thin films showing the VB edge region.

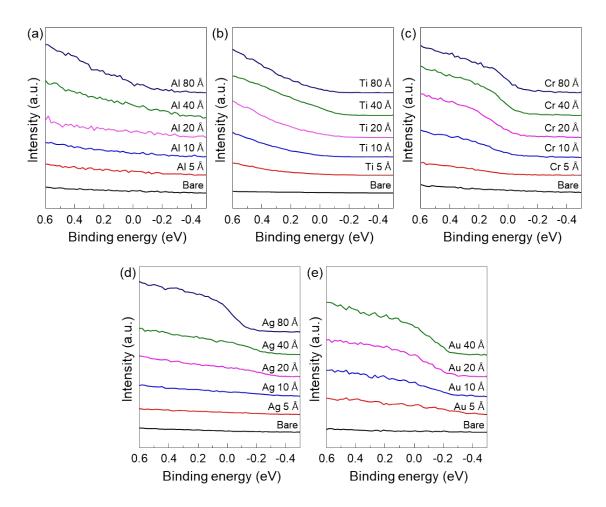
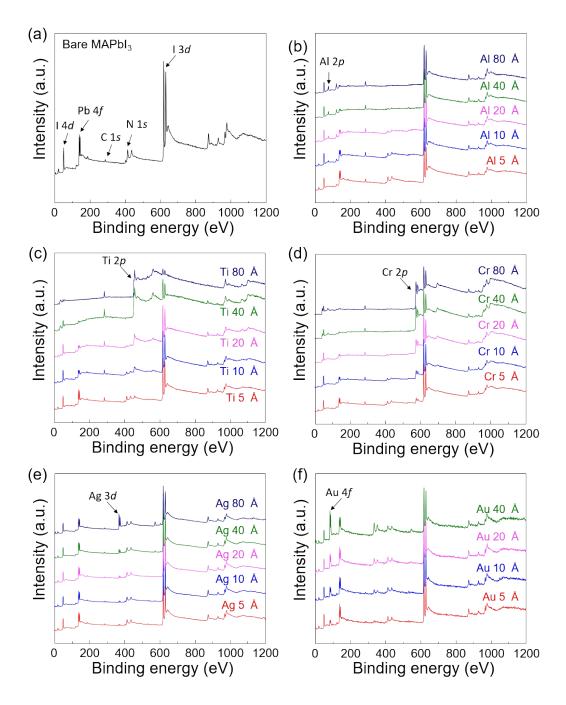
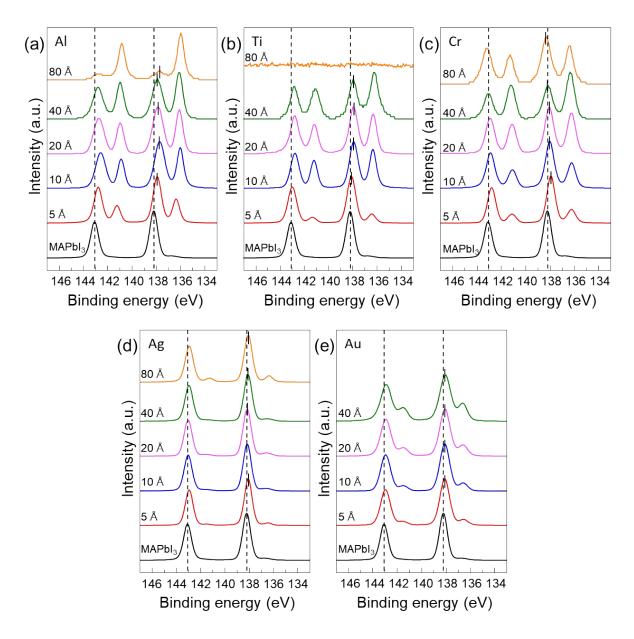





Fig. S4 Thickness dependent UPS spectra of metal/MAPbI<sub>3</sub> thin films showing the local enlarged view of the valence band edge region near  $E_F$ .



**Fig. S5** XPS survey spectra of (a) bare MAPbI<sub>3</sub> thin film and (b-f) metal/MAPbI<sub>3</sub> as function of metal deposition thickness on MAPbI<sub>3</sub>. (b) Al/MAPbI<sub>3</sub> thin films, (c) Ti/MAPbI<sub>3</sub>, (d) Cr/MAPbI<sub>3</sub>, (e) Ag/MAPbI<sub>3</sub> and (f) Au/MAPbI<sub>3</sub> thin films.



**Figure S6**. The evolution of Pb 4f core level spectra of (a) the Al/MAPbI<sub>3</sub> thin films, (b) the Ti/MAPbI<sub>3</sub> thin films, (c) the Cr/MAPbI<sub>3</sub> thin films, (d) the Ag/MAPbI<sub>3</sub> thin films, and (a) the Au/MAPbI<sub>3</sub> thin films, with increasing the deposited metal thickness.

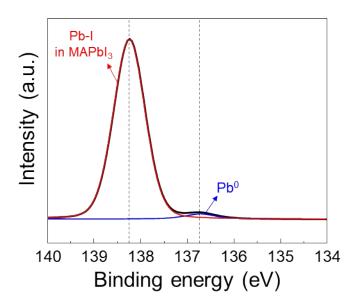



Fig. S7 The Pb  $4f_{7/2}$  core level spectrum of bare MAPbI<sub>3</sub> thin films.

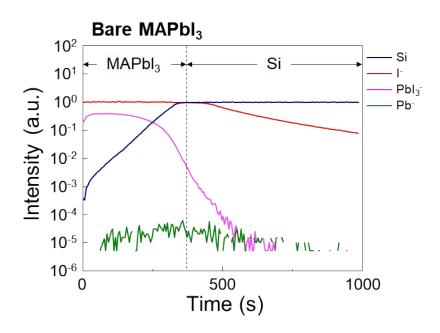



Fig. S8 ToF-SIMS depth profiles of the bare MAPbI<sub>3</sub> thin films.

| Metal | Metal-Metal<br>bond energy<br>(E <sub>M<sup>-</sup>M</sub> , kJ/mol) | Metal-Iodine<br>bond energy<br>(E <sub>M-I</sub> , kJ/mol) | Energy barrier $(\Delta E = E_{M-M} - E_{M-I}, kJ/mol)$ | Standard<br>enthalpy of<br>formation |
|-------|----------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|--------------------------------------|
| Al    | 264.3                                                                | 369.9                                                      | -105.6                                                  | -302.9 (AlI <sub>3</sub> )           |
| Ti    | 117.6                                                                | 306                                                        | -188.4                                                  | -375.7 (TiI <sub>4</sub> )           |
| Cr    | 152                                                                  | 287                                                        | -135                                                    | -205.0 (CrI <sub>3</sub> )           |
| Ag    | 162.9                                                                | 234                                                        | -71.1                                                   | -61.8 (AgI)                          |
| Au    | 226.2                                                                | 276                                                        | -49.8                                                   | 0 (AuI)                              |

**Table S1** Summary of the bond energies and standard enthalpies for metals.<sup>[7-9]</sup>

## References

- [1] J. Robertson, J. Vac. Sci. Technol. A, 2013, **31**, 050821.
- [2] S. M. Sze, K. K. Ng, *Physics of semiconductor devices*. John wiley & sons: 2006.
- [3] A. Walsh, D. O. Scanlon, S. Chen, X. G. Gong and S.-H. Wei, *Angew. Chem.*, 2014, **127**, 1811.
- [4] F. Brivio, K. T. Butler, A. Walsh and M. van Schilfgaarde, *Phys. Rev. B*, 2014, **89**, 155204.
- [5] A. Poglitsch and D. Weber, *J. Chem. Phys.*, 1987, **87**, 6373-6378.
- [6] S. Gupta, P. P. Manik, R. K. Mishra, A. Nainani, M. C. Abraham and S. Lodha, J. Appl. Phys., 2013, 113, 234505.
- [7] W.M. Haynes, CRC Handbook of Chemistry and Physics, CRC press, 2014.
- [8] M. W. Chase, J. L. Curnutt, A. T. Hu, H. Prophet, A. N. Syverud, L. C. Walker, *J. Phys. Chem. Ref. Data*, 1974, 3, 311-480.
- [9] S. Wu, R. Chen, S. Zhang, B. H. Babu, Y. Yue, H. Zhu, Z. Yang, C. Chen, W. Chen, Y. Huang, S. Fang, T. Liu, L. Han, W. Chen, *Nat. Commun.* 2019, 10, 1161.