Electronic Supplemnetary Information

Pyrolysis-controlled FeCoNi@hard carbon composites with facilitated

impedance matching for strong electromagnetic wave response

Junyao Shen^a, Danfeng Zhang^b, Qibai Wu^a, Yan Wang^a, Heng Gao^a, Jiale Yu^a, Guoxun Zeng^a, Haiyan Zhang^{a,*}

^aSchool of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China

^bSchool of Computer Science and Technology, Guangdong University of Technology,

Guangzhou 510006, China

*Corresponding Author E-mail: hyzhang@gdut.edu.cn

Fig. S1 SEM image of FeCoNi NSs

Fig. S2 HAADF-STEM and elemental mapping of FeCoNi@HC composites at 900 °C

Fig. S3 Normalized XRD patterns for confirming θ and β values based on the (002) peaks

For exact measuring the (002) peak of HC, the normalized XRD patterns are fitted through the corresponding four peaks of the raw XRD results, and therefore the θ and β values can be

extracted for the XRD patterns. It should be noted that since the β value for Scherrer equation is supported by radian format while the FWHM outputs of (002) peak is degree format, the radian format of β value for calculation then were transferred from degree to radian format based on the equation: $\beta = \beta^{\circ} \times \pi/180^{\circ}$. Here, the β values are 0.22 for FeCoNi@HC-600, 0.20 for FeCoNi@HC-700, and 0.19 for FeCoNi@HC-800, respectively.

Fig. S4 2D RL contour maps of the FeCoNi@HC composites. (a) FeCoNi@HC-600; (b) FeCoNi@HC-700; (c) FeCoNi@HC-800.

Fig. S5 3D/2D RL contour maps of FeCoNi NSs.

Fig. S6 Electromagnetic parameters of FeCoNi NSs. (a) the real/imaginary parts of complex permittivity; (b) the real/imaginary parts of complex permeability.

Fig. S7 C_0 curves of the FeCoNi@HC composites

Table S1 Fitting parameters of Raman spectra in the composites

Samples	Integral area (%)			- <u>c</u> /c	S /S	C /C	Total	
	D	G	D3	D4	$\mathbf{S}_{\mathrm{D}}/\mathbf{S}_{\mathrm{G}}$	s_{D3}/s_G	SD4/SG	Total
FeCoNi@HC-600	57.15	19.41	18.38	5.06	2.94	0.95	0.26	4.15
FeCoNi@HC-700	53.83	24.61	14.93	6.62	2.19	0.61	0.27	3.07
FeCoNi@HC-800	54.70	26.59	9.06	9.65	2.06	0.34	0.36	2.76

Table S2 EAB/EAB* values and related RL peaks with various thicknesses in the compositesFeCoNi@HC-600:

Thickness	RL peak	Frequency of RL peak	EAB (RL \leq -10 dB)	$EAB^* (RL \le -20 dB)$	
(mm)	(dB)	(GHz)	(GHz)	(GHz)	
1.5	-19.13	18.00	2.50 (15.50-18.00)	0.73 (13.16-13.89)	
2.0	-21.72	13.75	4.30 (11.70-16.00)	0.81 (10.41-11.22)	
2.5	-24.66	10.75	3.41 (9.27-12.68)	0.81 (8.52-9.33)	
3.0	-26.38	9.00	2.94 (7.62-10.56)	0.59 (7.37-7.96)	
3.5	-23.42	7.75	2.55 (6.55-9.10)	0.46 (6.48-6.94)	
4.0	-21.08	6.75	2.19 (5.73-7.92)	0.59 (7.37-7.96)	
4.5	-21.66	6.00	2.09 (4.96-7.05)	0.46 (6.48-6.94)	
5.0	-21.01	5.25	1.82 (4.43-6.25)	0.51 (4.98-5.49)	

FeCoNi@HC-700:

Thickness	RL peak	Frequency of RL peak	EAB (RL \leq -10 dB)	$EAB^* (RL \le -20 dB)$	
(mm)	(dB)	(GHz)	(GHz)	(GHz)	
1.5	-61.14	14.50	5.53 (12.33-17.86)	1.96 (14.05-16.01)	
2.0	-32.52	10.50	4.05 (8.98-13.03)	1.43 (10.07-11.50)	
2.5	-27.59	8.50	3.22 (7.03-10.25)	1.07 (7.91-8.98)	
3.0	-29.93	7.00	2.77 (5.75-8.52)	0.50 (6.88-7.38)	
3.5	-26.49	5.75	2.50 (4.75-7.25)	0.64 (5.54-6.18)	
4.0	-25.01	5.00	2.12 (4.13-6.25)	0.63 (4.78-5.41)	
4.5	-25.46	4.50	1.83 (3.68-5.51)	0.56 (4.14-4.70)	
5.0	-28.23	4.00	1.61 (3.31-4.92)	0.43 (3.76-4.19)	

FeCoNi@HC-800:

Thickness	RL peak	Frequency of RL peak	EAB (RL \leq -10 dB)	$EAB^* (RL \leq -20 dB)$	
(mm)	(dB)	(GHz)	(GHz)	(GHz)	
1.5	-25.34	16.50	5.75 (12.25-18.00)	1.64 (15.62-17.26)	
2.0	-30.79	10.25	4.55 (8.29-12.84)	0.79 (9.94-10.73)	
2.5	-19.35	8.00	3.37 (6.53-9.90)	0	
3.0	-19.68	6.50	2.59 (5.31-7.90)	0	
3.5	-19.24	5.25	2.20 (4.42-6.62)	0	
4.0	-20.35	4.75	1.84 (3.91-5.75)	0.06	
4.5	-18.66	4.00	1.53 (3.50-5.03)	0	
5.0	-19.51	3.75	1.38 (3.08-4.46)	0	

Table S3 An EM absorbing comparison summary of FeCoNi-based MAs in the recent works.

Samples	RL _{min} (dB)	EAB (GHz)	RL _{min} peak (GHz)	Filling ratio (wt%)	Thickness (mm)	Ref.
U-channelled FeCoNi	-36.9	About 6.10	8.6	75	2.5	1
Flake-like FeCoNi	-51	4.44	8	30	2.0	2
FeCoNi/graphene/TPU	-68	About 2.2	8.4	45.4	2.33	3
FeCoNi@PMMA	-37.2	4.5	12.2	45	1.5	4
Graphene/FeCoNi	-18.4	9.2	2.44	60	2	5
FeCoNi@HC-700	-61.12	5.53	14.50	30	1.5	This work

References

[1] H. Li, Z. Cao, J. Lin, H. Zhao, Q. Jiang, Z. Jiang, H. Liao, Q. Kuang and Z. Xie, *Nanoscale*, 2018, **10**, 1930-1938.

[2] K. Peng, G. Fang, C. Guo, C. Liu, G. Xu, A. Xiao, Y. Zhang and Y. Zhang, *J. Magn. Magn. Mater.*, 2019, **490**, 165488.

[3] T. Kim, J. Lee, K. Lee, B. Park, B. M. Jung and S. B. Lee, *Chem. Eng. J.*, 2019, **361**, 1182-1189.

[4] W. Jang, S. Mallesh, S. B. Lee and K. H. Kim, Curr. Appl. Phys., 2020, 20, 525-530.

[5] J. Lee, K. Lee, T. Kim and S. B. Lee, Funct. Compos. Struct., 2019, 1, 015003.