Supporting Information

Tuning the Selectivity of Highly Sensitive Chemiresistive Nanoparticle Networks by Encapsulation with Metal-Organic Frameworks

Alishba T. John^a, Krishnan Murugappan^{* a}, Mahdiar Taheri^b, David R. Nisbet^{c,d} and Antonio Tricoli^{* a,e}

^aNanotechnology Research Laboratory, Research School of Chemistry, College of Science, Australian National University, Canberra, ACT 2601, Australia

^bResearch School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra 2601, Australia

^cLaboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia

^dThe Graeme Clark Institute, Faculty of Engineering and Information Technology & Faculty

of Medicine, Dentistry and Health Services, The University of Melbourne, Melbourne, Australia

^eNanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia

*Corresponding authors: Krishnan Murugappan and Antonio Tricoli

E-mail: krishnan.murugappan@anu.edu.au; antonio.tricoli@anu.edu.au

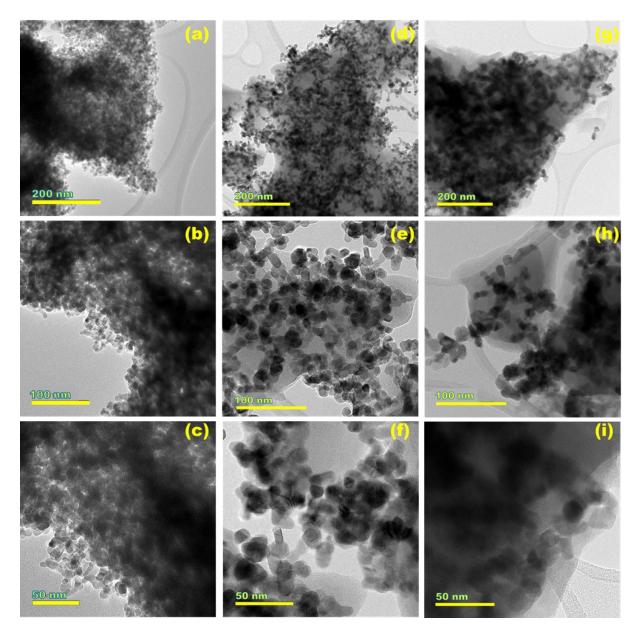


Fig. S1. Low magnification TEM images of (a-c) 1 nm ZIF-8/SnO₂, (d-f) 3 nm ZIF-8/SnO₂ (g-i) 10 nm ZIF-8/SnO₂.

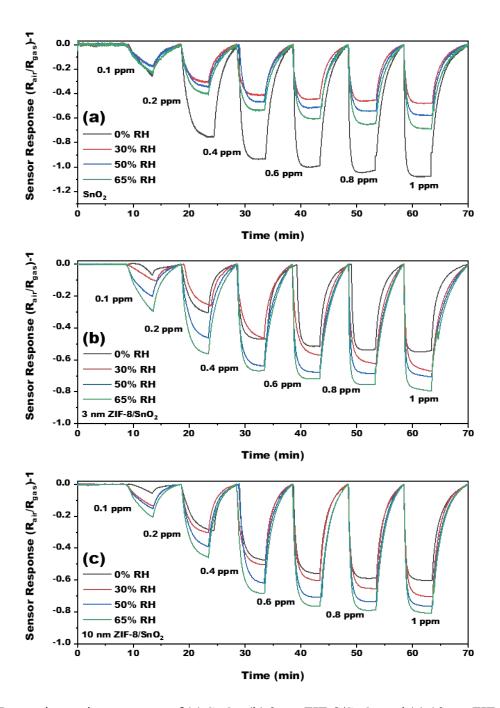


Fig. S2. Dynamic sensing response of (a) SnO_2 , (b) 3 nm ZIF-8/SnO₂ and (c) 10 nm ZIF-8/SnO₂ towards NO₂ as a function of concentration from 0.1–1 ppm under different RH conditions. All measurements were performed at 150 °C under solar irradiation.