Electronic Supplementary Information

Exciton energy transfer and bi-exciton annihilation in the emitting layers of thermally activated delayed fluorescence-based OLEDs

Hyunchul Kang,¹ Han Jin Ahn,² Gyeong Woo Kim,² Ji-Eun Jeong,¹ Han Young Woo,¹ Jun-Yun Kim,^{2,*} and Sungnam Park^{1,*}

¹Department of Chemistry and Research Institute for Natural Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea

²LG Display Co. Ltd., LG Science Park, 30, Magokjungang 10-ro, Gangseo-gu, Seoul, 07796, Republic of Korea

Corresponding Authors:

*E-mail: windwart@lgdisplay.com (J. Y. Kim) and spark8@korea.ac.kr (S. Park)

1. TADF kinetic model with the concentration quenching of triplet excitons

Time-resolved PL (TRPL) spectra of DPEPO:TDBA-DI films were analyzed by a conventional TADF kinetic model with a concentration quenching of triplet excitons. The coupled differential equations for the concentrations of singlet and triplet excitons ($[S_1]$ and $[T_1]$) can be written by,

$$\frac{d[\mathbf{S}_{1}](t)}{dt} = -(k_{\rm r}^{\rm S} + k_{\rm nr}^{\rm S} + k_{\rm ISC})[\mathbf{S}_{1}](t) + k_{\rm RISC}[\mathbf{T}_{1}](t)$$
(s1)

$$\frac{d[\mathbf{T}_{1}](t)}{dt} = k_{\rm ISC}[\mathbf{S}_{1}](t) - (k_{\rm nr}^{\rm T} + k_{\rm RISC})[\mathbf{T}_{1}](t) - k_{\rm TTA}[\mathbf{T}_{1}]^{2}(t)$$
(s2)

where k_r^{s} is the radiative rate constant of the excited singlet state, k_{nr}^{s} is the non-radiative rate constant of the excited singlet state, k_{ISC} is the intersystem crossing rate constant from the excited singlet state to the excited triplet state, k_{RISC} is the reverse intersystem crossing rate constant from the excited triplet state to the excited singlet state, k_{nr}^{T} is the non-radiative rate constant of the excited triplet state, and k_{TTA} is the rate constant of the concentration quenching of triplet excitons. The solution of Eqs. (s1) and (s2) is obtained by

$$[S_1](t) = A_{\rm PF} \exp(-t / \tau_{\rm PF}) + A_{\rm DF} \exp(-t / \tau_{\rm DF})$$
(s3)

where $\tau_{\rm PF} = 1/k_{\rm PF}$ and $\tau_{\rm DF} = 1/k_{\rm DF}$ were obtained by fitting a multi-exponential function $I(t) = \sum_{i=1}^{n} A_i \exp(-t/\tau_i)$ to TRPL signals. The prompt and delayed fluorescence rate constants, $k_{\rm PF}$ and $k_{\rm DF}$, are given by

$$k_{\rm PF} + k_{\rm DF} = k_{\rm r}^{\rm S} + k_{\rm nr}^{\rm S} + k_{\rm ISC} + k_{\rm r}^{\rm T} + k_{\rm nr}^{\rm T} + k_{\rm RISC} + k_{\rm TTA}^{\rm T}$$
(s4)

$$k_{\rm PF}k_{\rm DF} = (k_{\rm r}^{\rm S} + k_{\rm nr}^{\rm S} + k_{\rm ISC})(k_{\rm r}^{\rm T} + k_{\rm nr}^{\rm T} + k_{\rm RISC} + k_{\rm TTA}^{\rm T}) - k_{\rm ISC}k_{\rm RISC}$$
(s5)

where $k_{\text{TTA}} = k_{\text{TTA}}[T_1]$. By assuming that $k_{\text{PF}} >> k_{\text{DF}}$, $k_r^{\text{S}} >> k_{\text{nr}}^{\text{S}}$, k_{RISC} , $k_{\text{RISC}} >> k_r^{\text{T}}$, k_{nr}^{T} , $k_{\text{TTA}}^{\text{T}}$, and $k_{\text{nr}}^{\text{S}} \approx 0$, $k_{\text{nr}}^{\text{T}} \approx 0$ because of high PLQY, the rate constants can be simply obtained as,

$$k_{\rm PF} = 1 / \tau_{\rm PF} \approx k_{\rm r}^{\rm S} + k_{\rm ISC} \tag{s6}$$

$$k_{\rm DF} = 1/\tau_{\rm DF} \tag{s7}$$

$$k_{\rm r}^{\rm S} = k_{\rm PF} \cdot \Phi_{\rm PF} \tag{(s8)}$$

$$k_{\rm ISC} \simeq k_{\rm PF} \cdot \left(1 - \Phi_{\rm PF}\right) \tag{9}$$

$$k_{\rm RISC} = \left(k_{\rm DF} - k_{\rm nr}^{\rm T}\right) / \Phi_{\rm PF} \simeq k_{\rm DF} / \Phi_{\rm PF}$$
(s10)

On the other hand, when the concentration quenching of triplet excitons occurs and k_{TTA} is comparable to k_{RISC} , Eqs. (s4) and (s5) are reduced to

$$k_{\rm PF} + k_{\rm DF} \approx k_{\rm r}^{\rm S} + k_{\rm ISC} + k_{\rm RISC} + k_{\rm TTA}$$
(s11)

$$k_{\rm PF}k_{\rm DF} \approx k_{\rm r}^{\rm S}k_{\rm RISC} + k_{\rm r}^{\rm S}k_{\rm TTA} + k_{\rm ISC}k_{\rm TTA}$$
(s12)

Solving Eqs. (s11) and (s12) for k_{TTA} ,

$$k'_{\text{TTA}} = \frac{1}{2} \left(k_{\text{PF}} + k_{\text{DF}} - 2k_{\text{RISC}} - \sqrt{\left(k_{\text{PF}} - k_{\text{DF}} \right)^2 - 4k_{\text{ISC}} k_{\text{RISC}}} \right)$$
(s13)

The rate constant for the concentration quenching of triplet states $k'_{TTA} = k_{TTA}[T_1]$ can be determined once k_{PF} , k_{DF} , k_{ISC} , and k_{RISC} are experimentally measured.

In our experiments, k_{ISC} and k_{RISC} were assumed to be concentration-independent for DPEPO:TDBA-DI films. The k_{ISC} and k_{RISC} values obtained from DPEPO:TDBA-DI film (90:10 wt%) were used to determine k_{TTA} for DPEPO:TDBA-DI films (70:30 and 50:50 wt%).

Figure S1. Electroluminescence (EL) mechanism of TADF-based OLEDs.

Figure S2. Schematic illustration of our TRPL experimental setup.

Figure S3. (a) TRPL signals of DPEPO:TDBA-DI film (90:10 wt%) measured at 292 K and 78 K. (b) Fluorescence and phosphorescence spectra of DPEPO:TDBA-DI film (90:10 wt%) measured at 78 K ($\Delta E_{ST} = 68$ meV).

Figure S4. Intensity-calibrated $I_{\parallel}(t)$ and $I_{\perp}(t)$ measured with DPEPO:TDBA-DI films. (a) 90:10, (b) 70:30, and (c) 50:50 wt%.

DPEPO:TDBA-DI (wt%)	n _{host}	n _{dopant}	$V_{\rm box}({\rm nm}^3)$
90:10	560	39	497.8
70:30	467	133	565.6
50 : 50	359	240	628.5

Table S1. The number of host and dopant molecules (n_{host} and n_{dopant}) used for the MD simulations. The volume, V_{box} , of the simulation box for DPEPO:TDBA-DI films.

Table S2. Parameters for the fit of a Gaussian function to the distribution of the minimum distances of all pairs of TDBA-DI molecules in films: mean, $d_{\min,center}$, standard deviation, w, and R^2 values.

DPEPO:TDBA-DI (wt%)	$d_{\min, center}(nm)$	<i>w</i> (nm)	R^2
90:10	1.30	0.87	0.51
70:30	0.85	0.58	0.87
50 : 50	0.72	0.48	0.95

Figure S5. Distribution of the minimum distances, $d_{ij,min}$, of all pairs of neighboring TDBA-DI molecules in films: (a) 90:10, (b) 70:30, and (c) 50:50 wt%. The distribution is fitted by a Gaussian function. (d) Comparison of the average minimum distances of neighboring TDBA-DI molecules in films.

Figure S6. Exciton-exciton annihilation mechanism (bi-exciton recombination) in TADFbased OLEDs when the excitation laser power is increased.

Figure S7. Excitation power-dependent PL spectra of DPEPO:TDBA-DI films. (a) 90:10, (b) 70:30, and (c) 50:50 wt%.

Figure S8. Normalized excitation power-dependent PL spectra of DPEPO:TDBA-DI films. (a) 90:10, (b) 70:30, and (c) 50:50 wt%.