Supporting Materials

Type-III Organic/Two-Dimensional multi-layer Phototransistors

with Promoted Operation Speed at Communication Band

Jiayue Han, Chaoyi Zhang, Silu Peng, Xingchao Zhang, Xianchao Liu, Hongxi Zhou, Zhiming Wu, He Yu and Jun Wang*

Dr. J. Han, Dr. C. Zhang, Dr. S. Peng, Dr. X. Zhang, Dr. X. Liu, Dr. H. Zhou, Prof. Z. Wu, Prof. H. Yu, Prof. J. Wang School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China

E-mail: wjun@uestc.edu.cn

1. The EDS of graphene/HAT-CN/Bi₂O₂Se on SiO₂ substrate.

Fig. S1. The EDS of our device can distinguish Bi_2O_2Se and graphene/HAT-CN.

2. The Raman spectrum of HAT-CN on SiO₂ substrate.

Fig. S2. The Raman spectrum of HAT-CN can distinguish C-C peak and C-N peak.

3. The V_g modulation on graphene/HAT-CN/Bi_2O_2Se phototransistor.

Fig. S3. The IV and photocurrent measurements at different gate voltages under the 850 nm with 60 mW/cm²

Fig. S4. Optoelectronic characterization and measurements of graphene/ Bi_2O_2Se phototransistor. (a) The V_{ds} curve with varied Vg applying. (b) The energy band schematic of graphene/ Bi_2O_2Se . (c) Transient response performance of graphene/ Bi_2O_2Se .

5. Photocurrent measurements at increasing input power density.

Fig. S5. Transient photocurrent measurements at increasing input power density of graphene/Bi₂O₂Se and graphene/HAT-CN/Bi₂O₂Se control devices.

Fig. S6. (a,b) The dynamic response time of graphene/HAT-CN/ Bi_2O_2Se with the irradiated light at 850 and 1310 nm.

7. The thickness dependent performance of graphene/HAT-CN/Bi₂O₂Se.

Fig. S7. The responsivity and recover time of thickness various HATCN devices at 1310 nm.

8. The noise spectrum of graphene/Bi₂O₂Se

Fig. S8. The 1/f noise analysis of the device for different Vg values.

9. The stability of graphene/HAT-CN/Bi₂O₂Se

Fig. S9. (a) The detection stability of graphene/HAT-CN/ Bi_2O_2Se at 1550 nm. (b) And after 45 days, the stability of graphene/HAT-CN/ Bi_2O_2Se .