Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Dinaphtho[2,1-b:1',2'-d]thiophenes as High Refractive Index Materials Exploiting the Potential Characteristics of "Dynamic Thiahelicenes"

Yoko Nambu,*^a Yoko Yoshitake,^a Shohan Yanagi,^b Kenji Mineyama,^c Keisuke Tsurui,^c Shigeki Kuwata,^a Toshikazu Takata,^{a,#} Tadatomi Nishikubo^d and Ken Ishikawa^a

^aSchool of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan

^bAdvanced Materials Development Sector, Tokyo Metropolitan Industrial Technology Research Institute, Aomi, Koto-ku, Tokyo 135-0064, Japan ^cWakayama Research Institute, Sugai Chemical Co., Uzu, Wakayama, Wakayama 641-0043, Japan

^dDepartment of Material and Life Chemistry, Kanagawa University, Deceased Dec. 26, 2011.

Table of Contents

1. DFT Calculation of Polarizability	S2
2. Density Measurement	S5
3. X-ray Crystallographic Analysis	S7
4. Synthetic Procedures	S11
5. ¹ H and ¹³ C NMR Spectra	S12
6. DSC Profiles	S18

1. DFT Calculations of Polarizability

a. DNT

uwb97xd/6-311++g(2d,2p) geom=connectivity polar

```
1/38=1,57=2,172=1/1;

2/12=2,17=6,18=5,40=1/2;

3/5=4,6=6,7=1212,11=2,25=1,30=1,74=-58,116=2/1,2,3;

4//1;

5/5=2,38=5,98=1/2;

8/6=4,10=90,11=11/1;

10/6=1,13=10/2;

6/7=2,8=2,9=2,10=2,28=1/1;

99/5=1,9=1/99;
```

Electric dipole moment (input orientation):

(Debye = 10**-18 statcoulomb cm , SI units = C m) (au) (Debye) (10**-30 SI) Tot 0.569710D+00 0.144806D+01 0.483020D+01 x 0.220859D+00 0.561368D+00 0.187252D+01 y -0.520768D+00 -0.132366D+01 -0.441525D+01 z 0.677609D-01 0.172231D+00 0.574501D+00

```
Dipole polarizability, Alpha (input orientation).
(esu units = cm**3, SI units = C**2 m**2 J**-1)
Alpha(0;0):
```

	(au)	$(10^{**}-24 \text{ esu})$) $(10^{**}-40 \text{ SI})$
iso	0.261602D+03	0.387654D+02	0.431323D+02
aniso	0.194361D+03	0.288013D+02	0.320457D+02

XX	0.342932D+03	0.508172D+02	0.565418D+02
yx	0.765069D+00	0.113372D+00	0.126143D+00
уу	0.307190D+03	0.455208D+02	0.506487D+02
ZX	0.138158D+02	0.204729D+01	0.227792D+01
zy	-0.289028D+00	-0.428295D-01	-0.476543D-01
ZZ	0.134684D+03	0.199581D+02	0.222063D+02

b. DBT

wb97xd/6-311++g(2d,2p) geom=connectivity polar

 $\frac{1}{38}=1,57=2,172=1/1;$ $\frac{2}{12}=2,17=6,18=5,40=1/2;$ $\frac{3}{5}=4,6=6,7=1212,11=2,25=1,30=1,74=-58/1,2,3;$ $\frac{4}{11};$ $\frac{5}{5}=2,38=5,98=1/2;$ $\frac{8}{6}=4,10=90,11=11/1;$ $\frac{10}{6}=1,13=10/2;$ $\frac{6}{7}=2,8=2,9=2,10=2,28=1/1;$ $\frac{99}{5}=1,9=1/99;$

Electric dipole moment (dipole orientation):

(Debye = 10^{**} -18 statcoulomb cm , SI units = C m)

	(au)	(Debye) (1	0**-30 SI)
Tot	0.324750D+00	0.825433D+00	0.275335D+01
х	0.000000D+00	0.000000D+00	0.000000D+00
у	0.000000D+00	0.000000D+00	0.000000D+00
Z	0.324750D+00	0.825433D+00	0.275335D+01

Dipole polarizability, Alpha (dipole orientation).

(esu units = cm**3, SI units = C**2 m**2 J**-1) Alpha(0;0):

	(au)	(10**-24 esu)	(10**-40 SI)
iso	0.158938D+03	0.235522D+02	0.262054D+02
aniso	0.127726D+03	0.189271D+02	0.210592D+02
XX	0.230031D+03	0.340871D+02	0.379270D+02
ух	-0.685529D-02	-0.101585D-02	-0.113029D-02
уу	0.828042D+02	0.122703D+02	0.136526D+02
ZX	-0.374351D-03	-0.554731D-04	-0.617222D-04
zy	0.446880D-04	0.662209D-05	0.736806D-05
ZZ	0.163979D+03	0.242992D+02	0.270365D+02

2. Density Measurement

a. DNT

Cycle#	Volume cm3	Deviation cm3	Density g/cm3	Deviation g/cm3	Elapsed Time	Temperature °C
1	0.7157	0.0003	1.3859	-0.0005	0:10:27	26.9
Ż	0.7158	0.0004	1.3858	-0.0007	0:13:17	27.0
lad.	0.7152	-0.0002	1.3859 1000 r	0.0004	0:10:04 A:10:15	27.0
4 5	0.7141 0.7164	0.0010	1.3846	-0.0018	0:22:04	27.0
Average Vol Average Der	lume: 0.1 nsity: 1.3	7154 cm3 3865 g/cm3	St: St:	andard Deviat andard Deviat	ion: 0.0	008 cm3 15 g/cm3
mple Mass	0.9919	g				
emperature imber of Pu ell Volume	: 27.1 °C 1rges: 10 : 11.3110	cm3	Eq Exj	uilibration pansion Volu	Rate: 0. me: 8.4	0345 kPag/mi: 328 cm3
Cycle#	Volume cm3	Deviation cm3	Density g/cm3	Deviation g/cm3	Elapsed Time	Temperatur °C
	0.7167	_0.0002	1.3840	0.0004	0:09:18	27.0
Ź	0.7174	0.0005	1.3826	-0.0010	0:12:07	27.0
3	0.7176	0.0007	1.3823	-0.0014	0:15:21	27.0 27.1
41 E.1	0.7153 0.7175	0.0016	1.3824	-0.0012	0:20:56	27.1
verage Vol verage Den	ume: 0.7 sity: 1.3	169 cm3 836 g/cm3	St St	andard Devia andard Devia	tion: 0. tion: 0.0	0009 cm3 017 g/cm3
Sample Mas Temperatur Number of Cell Volum	s: 0.991 e: 27.1 °C Purges: 1 e: 11.311	9 g 0 cm3	Eq Ex	uilibration 1 pansion Volu	Rate: 0.0 ne: 8.43	345 kPag/min 28 cm3
Cycle#	Volume cm3	Deviation cm3	Density g/cm3	Deviation g/cm3	Elapsed Time	Temperature °C
	0.7142	-0.0037	1.3887	0.0072	. 0:10:33	27.1
Ź	0.7162	-0.0018	1.3850	0.0034	0:12:55 0:16:11	27.U 27.1
_	0.7210	0.0030	1.3/36	0.000 1000 0	л.10.72 Л.10.72	27.1
ت م	A 719A	0.0011	1.3/90	-0.0021	V : 1 2 : 4 3	<u> </u>

b. DBT

Sample Mass Temperature Number of F Cell Volume	s: 0.8757 e: 26.8 °C Purges: 10 e: 11.3110	'g)) cm3	Eq Ex	Equilibration Rate: 0.0345 kPag/min Expansion Volume: 8.4328 cm3			
	Volume	Deviation	Density	Deviation	Elapsed	Temperature	
Cycle#	cm3	cm3	g/cm3	g/cm3	Time	°C	
1 2 3 4 5	0.6628 0.6564 0.6563 0.6557 0.6563	0.0053 -0.0011 -0.0012 -0.0018 -0.0012	1.3213 1.3342 1.3343 1.3355 1.3344	-0.0106 0.0023 0.0024 0.0036 0.0024	0:09:21 0:12:22 0:15:49 0:18:12 0:21:08	26.7 26.7 26.7 26.8 26.8 26.8	
Average Vo	lume: 0.0	5575 cm3	st	andard Devia	tion: 0.0	027 cm3	
Average Dei	nsity: 1.1	3319 g/cm3	St	andard Devia	tion: 0.00)53 g/cm3	
Sample Mass Temperature Number of P Cell Volume	: 0.8757 : 26.9 °C ?urges: 10 : 11.3110	g cm3	Equ Exp	ilibration R ansion Volum	ate: 0.03 e: 8.432	945 kPag/min 28 cm3	
Cycle#	Volume	Deviation	Density	Deviation	Elapsed	Temperature	
	cm3	cm3	g/cm3	g/cm3	Time	°C	
1	0.6567	-0.0004	1.3334	0.0008	0:09:35	26.8	
2	0.6572	0.0001	1.3325	-0.0002	0:12:23	26.9	
3	0.6580	0.0009	1.3309	-0.0017	0:15:22	26.9	
4	0.6576	0.0004	1.3317	-0.0009	0:18:37	26.9	
5	0.6562	-0.0010	1.3346	0.0020	0:21:54	27.0	
Average Vol	.ume: 0.6	571 cm3	Sta	undard Deviat	:ion: 0.00	006 cm3	
Average Der	sity: 1.3	326 g/cm3	Sta	undard Deviat	:ion: 0.003	13 g/cm3	
Sample Mass	: 0.8757	g					
Temperature: 27.0 °C Number of Purges: 10 Cell Volume: 11.3110 cm3		Equ Exp	nilibration H Mansion Volum	Rate: 0.0 ne: 8.43	345 kPag/min 28 cm3		
Cycle#	Volume	Deviation	Density	Deviation	Elapsed	Temperature	
	cm3	cm3	g/cm3	g/cm3	Time	°C	
1 2 3 4 5	0.6583 0.6584 0.6585 0.6576 0.6583	0.0001 0.0002 0.0002 -0.0006 0.0001	1.3302 1.3299 1.3299 1.3317 1.3303	-0.0002 -0.0005 -0.0005 0.0013 -0.0001	0:10:13 0:13:08 0:15:55 0:18:32 0:21:33	26.9 26.9 26.9 26.9 26.9 26.9	
Average Volume: 0.6582 cm3				andard Devia	tion: 0.0	003 cm3	
Average Density: 1.3304 g/cm3				andard Devia	tion: 0.00	06 g/cm3	

3. X Ray Crystallographic Analysis

Crystallographic data of **DNT** and **DBT** have been deposited with the Cambridge Crystallographic Data Centre as CCDC No. 979346 (**DNT**) and CCDC No. 979347 (**DBT**). These data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223 336033; e-mail: <u>deposit@ccdc.cam.ac.uk</u> or via <u>https://www.ccdc.cam.ac.uk/structures/</u>).

a. Data Collection of DNT

A colorless prism crystal of $C_{20}H_{12}S$ having approximate dimensions of 0.340 x 0.180 x 0.070 mm was mounted on a glass fiber. All measurements were made on a Rigaku Saturn724 diffractometer using multi-layer mirror monochromated Mo-K α radiation. The crystal-to-detector distance was 45.03 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive orthorhombic cell with dimensions:

a = 21.334(12) Å, b = 8.374(5) Å, c = 7.256(4) Å, V = 1296.3(13) Å³

For Z = 4 and F.W. = 284.37, the calculated density is 1.457 g/cm³.

The reflection conditions of: 0kl: k = 2n, h0l: l = 2n, hk0: h+k=2n

uniquely determine the space group to be: Pbcn (#60)

The data were collected at a temperature of $-179 + 1^{\circ}C$ to a maximum 20 value of 55.0°. A total of 720 oscillation images were collected. A sweep of data was done using w oscillations from -110.0 to 70.0° in 0.5° steps. The exposure rate was 6.0 [sec./°]. The detector swing angle was -19.91° . A second sweep was performed using ω oscillations from -110.0 to 70.0° in 0.5° steps. The exposure rate was 6.0 [sec./°]. The detector swing angle was -19.91° . A second sweep was performed using ω oscillations from -110.0 to 70.0° in 0.5° steps. The exposure rate was 6.0 [sec./°]. The detector swing angle was -19.91° . The crystal-to-detector distance was 45.03 mm. Readout was performed in the 0.141 mm pixel mode.

b. Data Reduction of DNT

Of the 8166 reflections that were collected, 1443 were unique ($R_{int} = 0.0497$); equivalent reflections were merged. Data were collected and processed using CrystalClear (Rigaku).¹

The linear absorption coefficient, ω , for Mo-K α radiation is 2.373 cm⁻¹. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.768 to 0.984. The data were corrected for Lorentz and polarization effects.

c. Structure Solution and Refinement of DNT

The structure was solved by direct methods² and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement³ on F^2 was based on 1443 observed reflections and 96 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

$$R_1 = \Sigma (|F_o| - |F_c|) / \Sigma |F_o| = 0.0497$$
$$wR_2 = [\Sigma (w (F_o^2 - F_c^2)^2) / \Sigma w (F_o^2)^2]^{1/2} = 0.1382$$

The goodness of fit⁴ was 1.09. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.76 and -0.31 e/Å³, respectively.

Neutral atom scattering factors were taken from International Tables for Crystallography (IT), Vol. C, Table 6.1.1.4⁵. Anomalous dispersion effects were included in F_{calc}^{6} ; the values for $\Delta f'$ and Df' were those of Creagh and McAuley⁷. The values for the mass attenuation coefficients are those of Creagh and Hubbell.⁸ All calculations were performed using the Crystal-Structure⁹ crystallographic software package except for refinement, which was performed using SHELXL Version 2014/7.¹⁰

d. Data Collection of DBT

A colorless prism crystal of $C_{12}H_8S$ having approximate dimensions of 0.230 x 0.210 x 0.150 mm was mounted on a glass fiber. All measurements were made on a Rigaku Saturn724 diffractometer using multi-layer mirror monochromated Mo-K α radiation.

The crystal-to-detector distance was 45.00 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell with dimensions:

a = 8.560(3) Å, b = 5.963(2) Å, c = 16.980(7) Å, $\beta = 94.392(5)^{\circ}$, V = 864.1(6) Å³

For Z = 4 and *F.W.* = 184.26, the calculated density is 1.416 g/cm³. The reflection conditions of:

h0l: h+l = 2n, 0k0: k = 2n

uniquely determine the space group to be: $P2_1/n$ (#14)

The data were collected at a temperature of $-179 \pm 1^{\circ}$ C to a maximum 20 value of 54.9°. A total of 720 oscillation images were collected. A sweep of data was done using ω oscillations from -110.0 to 70.0° in 0.50° steps. The exposure rate was 4.0 [sec./°]. The detector swing angle was -19.86°. A second sweep was performed using ω oscillations from -110.0 to 70.0° in 0.5° steps. The exposure rate was 4.0 [sec./°]. The detector swing angle was -19.86°. A second sweep was performed using ω oscillations from -110.0 to 70.0° in 0.5° steps. The exposure rate was 4.0 [sec./°]. The detector swing angle was -19.86°. The exposure rate was 4.0 [sec./°].

e. Data Reduction of DBT

Of the 5762 reflections that were collected, 1919 were unique ($R_{int} = 0.0698$); equivalent reflections were merged. Data were collected and processed using CrystalClear (Rigaku).¹

The linear absorption coefficient, ω , for Mo-K α radiation is 3.123 cm⁻¹. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.844 to 0.954. The data were corrected for Lorentz and polarization effects. A correction for secondary extinction² was applied (coefficient = 14.708000).

f. Structure Solution and Refinement of DBT

The structure was solved by direct methods² and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement³ on F^2 was based on

1919 observed reflections and 96 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

 $R_1 = \Sigma (|F_o| - |F_c|) / \Sigma |F_o| = 0.0489$

 $wR_2 = [\Sigma (w (F_o^2 - F_c^2)^2) / \Sigma w (F_o^2)^2]^{1/2} = 0.1317$

The goodness of fit⁴ was 1.13. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.76 and -0.31 e $/\text{Å}^3$, respectively.

Neutral atom scattering factors were taken from International Tables for Crystallography (IT), Vol. C, Table 6.1.1.4⁵. Anomalous dispersion effects were included in F_{calc}^{6} ; the values for $\Delta f'$ and $\Delta f'$ were those of Creagh and McAuley⁷. The values for the mass attenuation coefficients are those of Creagh and Hubbell.⁸ All calculations were performed using the Crystal-Structure⁹ crystallographic software package except for refinement, which was performed using SHELXL Version 2014/7.¹⁰

References of X Ray Crystallographic Analysis

- 1. <u>CrystalClear</u>: Data Collection and Processing Software, Rigaku Corporation, 1998-2015. Tokyo, Japan.
- 2. <u>SIR92</u>: A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, *J. Appl. Cryst.* 1993, **26**, 343-350.
- 3. Least Squares function minimized: (SHELXL Version 2014/7)

 $\Sigma w (Fo^2 - Fc^2)^2$ where: w = Least Squares weights.

4. Goodness of fit is defined as:

 $[\Sigma w (F_o^2 - F_c^2)^2 / (N_o - N_v)]^{1/2}$ where: N_o = number of observation, N_v = number of variables

- 5. International Tables for Crystallography, C. (Ed.: A.J.C. Wilson), Kluwer Academic Publishers, Dordrecht, Netherlands, Table 6.1.1.4, 1992, 572.
- 6. J. A. Ibers and W. C. Hamilton, Acta Crystallogr., 1964, 17, 781.
- 7. D. C. Creagh, W. J. McAuley in *International Tables for Crystallography*, *C*, (Ed.: A.J.C. Wilson), Kluwer Academic Publishers, Boston, Table 4.2.6.8, 1992, 219-222.
- 8. D. C. Creagh, J. H. Hubbell in *International Tables for Crystallography*, *C*, (Ed.: A.J.C. Wilson), Kluwer Academic Publishers, Boston, Table 4.2.6.8, 1992, 200-206.
- 9. CrystalStructure 4.3: *Crystal Structure Analysis Package*, Rigaku Corporation, 2000-2018, Tokyo, Japan.
- 10. SHELXL Version 2014/7: G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.

Fig. S1 Comparison of single crystals of **DNT** and **DBT** by the distance (Å) between stacked aromatics of a) **DNT** and c) **BDT**, and by the distance (Å) between neighboring molecules of b) **DNT** and d) **BDT**.

4. Synthetic Procedures

1. Synthesis of dinaphtho[2,1-b:1',2'-d]thiophene (DNT)

To a solution of 1,1'-binaphthol (20.0 g, 69.9 mmol) in DMF (150 mL), was added sodium hydride (55% oil dispersion) (6.7 g, 153.7 mmol) portionwise. The mixture was stirred for 1 h at 0 °C, and then N, N-dimethylcarbamoyl chloride (purity 95%, 20.0 g 153.7 mmol) was added. The reaction solution was stirred for 1 h at 85 °C, cooled to room temperature and poured into 1% aqueous KOH (500 mL) with vigorous stirring. The precipitate was collected by filtration, washed with water and dissolved in CH₂Cl₂. The solution was dried over MgSO₄, and solvent was removed in vacuo. The crude product was recrystallized from CH₂Cl₂-petrolium ether to obtain **BNpOT** (27.4 g, 85.0%). mp.205.9 – 206.8 °C (lit. mp, 200 – 209.5 °C). Next, **BNpOT** (6.0 g, 13.1 mmol) was dissolved in sulfolane (12 mL), heated for 2 h at 260 °C with vigorous stirring, and cooled to room temperature. The reaction solution was poured into water, and the precipitate was collected by filtration. After drying under reduced pressure the precipitate was dissolved in CHCl₃, decolorized over active carbon and recrystallized from CHCl₃-*n*-hexane to give **DNT** (2.6 g, 71.0%) as a white powder. m.p. 207.5 – 208.3 °C (lit.¹ m.p. 208-209 °C).

¹H NMR and ¹³C NMR spectra were in agreement with the reported data.²

References

- 1. V. N. Gogte, V. S. Palkar and B. D. Tilak, Tetrahedron Lett., 1960, 1, 30-34.
- 2. T. Zhang, G. Deng, H. Li, B. Liu, Q. Tan and B. Xu, Org. Lett., 2018, 20, 5439-5443.

Fig. S2. ¹H NMR spectrum of FDNT (600 MHz, CDCl₃, 298 K, ppm).

Fig. S3 ¹³C NMR spectrum of FDNT (150 MHz, CDCl₃, 298 K, ppm).

Fig. S4 ¹H NMR spectrum of HMDNT (600 MHz, CDCl₃, 298 K, ppm).

Fig. S5 ¹³C NMR spectrum of HMDNT (150 MHz, CDCl3, 298 K, ppm).

Fig. S6 ¹H NMR spectrum of VDNT (600 MHz, CDCl₃, 298 K, ppm).

Fig. S7¹³C NMR spectrum of VDNT (150 MHz, CDCl₃, 298 K. ppm)

Fig. S8 ¹H NMR spectrum of DNTMA (600 MHz, CDCl₃, 298 K, ppm).

Fig. S9 13 C NMR spectrum of DNTMA (150 MHz, CDCl₃, 298 K, ppm).

Fig. S10 ¹H NMR spectrum of PVDNT (500 MHz, CDCl₃, 298 K).

Fig. S11 ¹³C NMR spectrum of PVDNT (125 MHz, CDCl₃, 298 K).

Fig. S12 ¹H NMR spectrum of **PDNTMA** (500 MHz, CDCl₃, 298 K).

Fig. S13 ¹³C NMR spectrum of **PDNTMA** (125 MHz, CDCl₃, 298 K).

Fig. S14 Differential scanning calorimetric analysis of PVDNT.

Fig. S15 Differential scanning calorimetric analysis of PDNTMA.