Supporting Information

Dinaphtho[2,1-b:1', $\mathbf{2}^{\prime}-d$]thiophenes as High Refractive Index Ma- terials Exploiting the Potential Characteristics of "Dynamic Thiahelicenes"
Yoko Nambu, ${ }^{* a}$ Yoko Yoshitake, ${ }^{a}$ Shohan Yanagi, ${ }^{\text {b }}$ Kenji Mineyama, ${ }^{\text {c }}$ Keisuke Tsurui, ${ }^{\text {c }}$ Shi- geki Kuwata, ${ }^{\text {a }}$ Toshikazu Takata, ${ }^{\text {a, }, \text {, }}$ Tadatomi Nishikubo ${ }^{\text {d }}$ and Ken Ishikawa ${ }^{\text {a }}$${ }^{a}$ School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama,Meguro-ku, Tokyo 152-8552, Japan${ }^{b}$ Advanced Materials Development Sector, Tokyo Metropolitan Industrial Technology Re-search Institute, Aomi, Koto-ku, Tokyo 135-0064, Japan${ }^{c}$ Wakayama Research Institute, Sugai Chemical Co., Uzu, Wakayama, Wakayama 641-0043,Japan
${ }^{d}$ Department of Material and Life Chemistry, Kanagawa University,Deceased Dec. 26, 2011.
Table of Contents

1. DFT Calculation of Polarizability S2
2. Density Measurement S5
3. X-ray Crystallographic Analysis S7
4. Synthetic Procedures S11
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S12
6. DSC Profiles S18

1. DFT Calculations of Polarizability

a. DNT

```
# uwb97xd/6-311++g(2d,2p) geom=connectivity polar
```

$1 / 38=1,57=2,172=1 / 1$;
$2 / 12=2,17=6,18=5,40=1 / 2 ;$
$3 / 5=4,6=6,7=1212,11=2,25=1,30=1,74=-58,116=2 / 1,2,3 ;$
4//1;
$5 / 5=2,38=5,98=1 / 2 ;$
$8 / 6=4,10=90,11=11 / 1 ;$
$10 / 6=1,13=10 / 2$;
$6 / 7=2,8=2,9=2,10=2,28=1 / 1 ;$
$99 / 5=1,9=1 / 99$;

Electric dipole moment (input orientation):
$\left(\right.$ Debye $=10^{* *}-18$ statcoulomb cm, SI units $\left.=\mathrm{C} \mathrm{m}\right)$
(au) (Debye) (10**-30 SI)
Tot $0.569710 \mathrm{D}+000.144806 \mathrm{D}+010.483020 \mathrm{D}+01$
$x 0.220859 D+000.561368 D+000.187252 D+01$
у -0.520768D+00-0.132366D+01-0.441525D+01
z 0.677609D-01 0.172231D+00 0.574501D+00

Dipole polarizability, Alpha (input orientation).
$\left(\right.$ esu units $=\mathrm{cm}^{* *} 3$, SI units $\left.=\mathrm{C}^{* *} 2 \mathrm{~m} * * 2 \mathrm{~J} * *-1\right)$
Alpha(0;0):

> (au)
(10**-24 esu)
(10**-40 SI)
iso $\quad 0.261602 \mathrm{D}+03$
$0.387654 \mathrm{D}+02$
$0.431323 \mathrm{D}+02$
aniso $0.194361 \mathrm{D}+03$
$0.288013 \mathrm{D}+02$
$0.320457 \mathrm{D}+02$

xx	$0.342932 \mathrm{D}+03$	$0.508172 \mathrm{D}+02$	$0.565418 \mathrm{D}+02$
yx	$0.765069 \mathrm{D}+00$	$0.113372 \mathrm{D}+00$	$0.126143 \mathrm{D}+00$
yy	$0.307190 \mathrm{D}+03$	$0.455208 \mathrm{D}+02$	$0.506487 \mathrm{D}+02$
zx	$0.138158 \mathrm{D}+02$	$0.204729 \mathrm{D}+01$	$0.227792 \mathrm{D}+01$
zy	$-0.289028 \mathrm{D}+00$	$-0.428295 \mathrm{D}-01$	$-0.476543 \mathrm{D}-01$
zz	$0.134684 \mathrm{D}+03$	$0.199581 \mathrm{D}+02$	$0.222063 \mathrm{D}+02$

b. DBT

\# wb97xd/6-311++g(2d,2p) geom=connectivity polar

$1 / 38=1,57=2,172=1 / 1 ;$
$2 / 12=2,17=6,18=5,40=1 / 2$;
$3 / 5=4,6=6,7=1212,11=2,25=1,30=1,74=-58 / 1,2,3 ;$
4//1;
$5 / 5=2,38=5,98=1 / 2 ;$
$8 / 6=4,10=90,11=11 / 1 ;$
$10 / 6=1,13=10 / 2$;
$6 / 7=2,8=2,9=2,10=2,28=1 / 1 ;$
$99 / 5=1,9=1 / 99$;

Electric dipole moment (dipole orientation):
$\left(\right.$ Debye $=10^{* *}-18$ statcoulomb cm , SI units $\left.=\mathrm{C} \mathrm{m}\right)$
(au) (Debye) (10**-30 SI)
Tot $\quad 0.324750 \mathrm{D}+00 \quad 0.825433 \mathrm{D}+00 \quad 0.275335 \mathrm{D}+01$
x $\quad 0.000000 \mathrm{D}+00 \quad 0.000000 \mathrm{D}+00 \quad 0.000000 \mathrm{D}+00$
y $\quad 0.000000 \mathrm{D}+00 \quad 0.000000 \mathrm{D}+00 \quad 0.000000 \mathrm{D}+00$
$\mathrm{z} \quad 0.324750 \mathrm{D}+00 \quad 0.825433 \mathrm{D}+00 \quad 0.275335 \mathrm{D}+01$

Dipole polarizability, Alpha (dipole orientation).
(esu units $=\mathrm{cm}^{* *} 3$, SI units $\left.=\mathrm{C} * * 2 \mathrm{~m}^{* *} 2 \mathrm{~J} * *-1\right)$
Alpha(0;0):
(au) (10**-24 esu) (10**-40 SI)
iso $\quad 0.158938 \mathrm{D}+03 \quad 0.235522 \mathrm{D}+02 \quad 0.262054 \mathrm{D}+02$
aniso $\quad 0.127726 \mathrm{D}+03 \quad 0.189271 \mathrm{D}+02 \quad 0.210592 \mathrm{D}+02$
$\mathrm{xx} \quad 0.230031 \mathrm{D}+03 \quad 0.340871 \mathrm{D}+02 \quad 0.379270 \mathrm{D}+02$
yx -0.685529D-02 -0.101585D-02 -0.113029D-02
yу $\quad 0.828042 \mathrm{D}+02 \quad 0.122703 \mathrm{D}+02 \quad 0.136526 \mathrm{D}+02$
zx $\quad-0.374351 D-03 \quad-0.554731 D-04 \quad-0.617222 \mathrm{D}-04$
zy $\quad 0.446880 \mathrm{D}-04 \quad 0.662209 \mathrm{D}-05 \quad 0.736806 \mathrm{D}-05$
zz $\quad 0.163979 \mathrm{D}+03 \quad 0.242992 \mathrm{D}+02 \quad 0.270365 \mathrm{D}+02$

2. Density Measurement

a. DNT

Sample Mase 0.93195
Temperature: 27.0 ${ }^{5} 0$
Number of Purges: 10
Cell Volume: 11.310 ems
Equilibration Rate: $0.0345 \mathrm{kPag} / \mathrm{min}$ Eypaneion Volume: 8.432 Em

Cycle\#	Volume cm	Deviation cm 3	Density g/am	Deviation c/am	$\begin{gathered} \text { Elapsed } \\ \text { Time } \end{gathered}$	Temperatur
1	0.7157	0.0003	1.3859	-0.0005	0:10:27	26.9
2	0.7158	0.0004	1.3858	-0.0007	$0: 13: 17$	27.0
3	0.7152	-0.0002	1.3859	0.0004	0:16:04	27.0
4	0.7141	-0.0014	1.3891	0.0026	0:19:15	27.0
5	0.7154	0.0020	1.3846	-0.0018	0:22:04	27.0

Average Volume:	0.7154 cmi	Etandard Deviationt 0.0008 mm
Average Density;	1. $3865 \mathrm{~g} / \mathrm{cm}$	Standard Deviations $0.0015 \mathrm{~g} / \mathrm{ms}$

Sample Mase: 0.9019 g
Temperature: 27.1 "C

Number ef Purges: 10
Cell Volume: 11.3110 cm
Fquilibration Fates $0.0345 \mathrm{kPag} / \mathrm{min}$ Expaneion Volume: $\quad .432 \mathrm{~mm}$

Cycle	$\begin{gathered} \text { Volume } \\ \text { ems } \end{gathered}$	Deviation cm	Density $9 / \mathrm{cm}^{3}$	Deviation व/cm	Figpeed Time	$\begin{gathered} \text { Temperature } \\ \mathrm{v}_{\mathrm{C}} \end{gathered}$
1	0.7167	-0.0002	1. 3840	0.0004	0.09 .18	27.0
2	0.7174	0.0005	1.3826	-0.0010	0.12:07	27.0
3	0.7175	0.0007	1.3823	-0.0014	0.15:21	27.0
4	0.7153	-0.0016	1.3868	0.0032	0:17:51	27.1
5	0.7175	0.0006	1. 7824	-0.0012	$0: 20: 56$	27.1

Standard Deviation: 0.0009 em
Average Volume: 0.7159 ams
Average Denaity $1.3856 \mathrm{~g} / \mathrm{m} \mathrm{m}$
Standard Deviation: $0.0017 \mathrm{~g} / \mathrm{m} \mathrm{m}$

Paulibuation Rates 0.0345 kpag/min Expanaion Volume : $8.4 \operatorname{sen}^{2}$

$\begin{gathered} \text { Density } \\ \text { g/en } \end{gathered}$	Deviation G/ cm	Fizpsed Time	Temparature ${ }^{5} \mathrm{C}$
1.3687	0.0072	- 0,10:3咅	27.1
1. 3650	0.0034	0.12:55	27.0
1. 3758	-0.0058	0:16:11	27.1
1. 3795	-0.0021	011932	27.1
1. 790	-0.0026	0:22:12	27:1

Avarage Volume $\quad 0.7179 \mathrm{~cm}$
Average Dencity
$1.3816 \mathrm{~g} / \mathrm{m}$

Standard Devistion: 0.0024 ems
Standard Devibtion: 0.0045 g/ams

Sample Mass: 0.8757g
Temperature: 26.8 "C
Number of Purges 10
Cell Volume 11.3110 em

Cycler	Volume cm	$\begin{gathered} \text { Deviation } \\ \text { cms } \end{gathered}$	$\begin{gathered} \text { Density } \\ \text { g/cms } \end{gathered}$	$\begin{gathered} \text { Deviation } \\ \text { g/am3 } \end{gathered}$	Elapsed Time	Temperatur ${ }^{8} \mathrm{C}$
1	0.6528	0.0051	1. 3213	-0.0106	0:00:21	26.7
2	0.6564	-0.0011	1.3342	0.0023	0.12:22	25.7
3	0.6563	-0.0012	1.334	0.0024	0:15:49	26.7
	$0.655^{5} 7$	-0.0018	1.3555	0.0036	0.18 .12	26.8
5	-.	-0.0012	1. 3344	0.0024	0:21:08	26.8

Averege Volume: 0.6575 em
Average Density, $1.3119 \mathrm{~g} / \mathrm{m} \mathrm{m}^{2}$

Sample Mase: 0.E7E7 9
Temperatme: $26.9{ }^{\circ} \mathrm{C}$
Number of Purges: 10
Celi Volume: 11.3110 ams

cyele	Volume cm	$\begin{gathered} \text { Deviation } \\ \mathrm{dm} \end{gathered}$	$\begin{gathered} \text { Density } \\ \text { g/cms } \end{gathered}$	Deviation g/cm	Elepsed Time	Temperature ${ }^{9} \mathrm{C}$
1	0.5567	-0.0004	1. 3334	0.0008	0:09:35	25.8
2	0.5572	0.0001	1.3325	-0.0002	0:12:23	25:9
3	0.5580	0.0009	1. 3309	-0.0017	0:15:22	25.9
4	0.6576	0.0004	1.3317	-0.0000	0:18:37	26.9
5	0.6562	-0.0010	1.3546	0.0020	0:21:54	27.0

Equilibration Rate: $0.0345 \mathrm{kPag} / \mathrm{min}$ Expansion Volume: B.432e ems

Standare Deviation: 0.0027 cm
Standard Deviation: 0.005 g g/ems

Eguilibration Rate: $0.0345 \mathrm{kPag} / \mathrm{min}$ Expaneion Velume: 8.432 cm

Sample Mass 0.8757
Temperature: 27.0 "0
Humber of Purges: 10
Cell Voume: 11.3110 cms
Equilibretion Retes $0.034 \mathrm{kPag} / \mathrm{min}$ Expansion Volume: 8.4328 ems

Cyele\#	Volume 돌	$\begin{gathered} \text { Deviation } \\ \text { cms } \end{gathered}$	$\begin{gathered} \text { Density } \\ \text { g/cm } \end{gathered}$	Deviation व/am	Plapeed Time	Temperature
1	0.558	0.0001	1:3302	-0.0002	$0: 10.13$	25.9
2	0.5584	0.0002	1. 3299	-0.0005	0.13:08	25.9
)	0.658	0.0002	1.3299	-0.0005	$0 \cdot 15: 55$	26.9
4	0.6576	-0.0006	1.3127	0.0013	0:18:32	25.9
$\stackrel{5}{5}$	-.	.	1,303	-0.0001	0,21:33	26.9

$\begin{array}{ll}\text { Average Volume: } & 0.652 \mathrm{Em} \\ \text { Average Density } & 1.304 \mathrm{~g} / \mathrm{ms}\end{array}$

Standerd Deviations 0.0006 mm
Standara Deviation $0.0013 \mathrm{~g} / \mathrm{m} \mathrm{m}^{3}$

3. X Ray Crystallographic Analysis

Crystallographic data of DNT and DBT have been deposited with the Cambridge Crystallographic Data Centre as CCDC No. 979346 (DNT) and CCDC No. 979347 (DBT). These data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk or via https://www.ccdc.cam.ac.uk/structures/).

a. Data Collection of DNT

A colorless prism crystal of $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~S}$ having approximate dimensions of $0.340 \times 0.180 \mathrm{x}$ 0.070 mm was mounted on a glass fiber. All measurements were made on a Rigaku Saturn724 diffractometer using multi-layer mirror monochromated Mo-K α radiation. The crys-tal-to-detector distance was 45.03 mm .

Cell constants and an orientation matrix for data collection corresponded to a primitive orthorhombic cell with dimensions:

$$
a=21.334(12) \AA, b=8.374(5) \AA, c=7.256(4) \AA, V=1296.3(13) \AA^{3}
$$

For $Z=4$ and $F . W .=284.37$, the calculated density is $1.457 \mathrm{~g} / \mathrm{cm}^{3}$.
The reflection conditions of: $0 k l: k=2 \mathrm{n}, h 0 l: l=2 \mathrm{n}, h k 0: h+k=2 \mathrm{n}$
uniquely determine the space group to be: Pbcn (\#60)
The data were collected at a temperature of $-179+1^{\circ} \mathrm{C}$ to a maximum 2θ value of 55.0°. A total of 720 oscillation images were collected. A sweep of data was done using w oscillations from -110.0 to 70.0° in 0.5° steps. The exposure rate was $6.0\left[\mathrm{sec} . /^{\circ}\right]$. The detector swing angle was -19.91°. A second sweep was performed using ω oscillations from -110.0 to 70.0° in 0.5° steps. The exposure rate was 6.0 [sec. $/^{\circ}$]. The detector swing angle was -19.91°. The crystal-to-detector distance was 45.03 mm . Readout was performed in the 0.141 mm pixel mode.

b. Data Reduction of DNT

Of the 8166 reflections that were collected, 1443 were unique ($R_{\mathrm{int}}=0.0497$); equivalent reflections were merged. Data were collected and processed using CrystalClear (Rigaku). ${ }^{1}$

The linear absorption coefficient, ω, for Mo-K α radiation is $2.373 \mathrm{~cm}^{-1}$. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.768 to 0.984 . The data were corrected for Lorentz and polarization effects.

c. Structure Solution and Refinement of DNT

The structure was solved by direct methods ${ }^{2}$ and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement ${ }^{3}$ on F^{2} was based on 1443 observed reflections and 96 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:
$R_{1}=\Sigma\left(\left|F_{o}\right|-\left|F_{c}\right|\right) / \Sigma\left|F_{o}\right|=0.0497$
$w R_{2}=\left[\Sigma\left(w\left(F_{o}^{2}-F_{c}^{2}\right)^{2}\right) / \Sigma w\left(F_{o}^{2}\right)^{2}\right]^{1 / 2}=0.1382$

The goodness of fit^{4} was 1.09 . Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.76 and $-0.31 \mathrm{e} / \AA^{3}$, respectively.

Neutral atom scattering factors were taken from International Tables for Crystallography (IT), Vol. C, Table 6.1.1.4 ${ }^{5}$. Anomalous dispersion effects were included in $F_{\text {calc }}{ }^{6}$; the values for Δf^{\prime} and $D f^{\prime \prime}$ were those of Creagh and McAuley ${ }^{7}$. The values for the mass attenuation coefficients are those of Creagh and Hubbell. ${ }^{8}$ All calculations were performed using the CrystalStructure ${ }^{9}$ crystallographic software package except for refinement, which was performed using SHELXL Version 2014/7. ${ }^{10}$

d. Data Collection of DBT

A colorless prism crystal of $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~S}$ having approximate dimensions of $0.230 \times 0.210 \times 0.150$ mm was mounted on a glass fiber. All measurements were made on a Rigaku Saturn724 diffractometer using multi-layer mirror monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation.

The crystal-to-detector distance was 45.00 mm .
Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell with dimensions:

$$
\begin{aligned}
& a=8.560(3) \AA, b=5.963(2) \AA, \quad c=16.980(7) \AA, \quad \beta=94.392(5)^{\circ}, \quad V= \\
& 864.1(6) \AA^{3}
\end{aligned}
$$

For $Z=4$ and $F . W .=184.26$, the calculated density is $1.416 \mathrm{~g} / \mathrm{cm}^{3}$. The reflection conditions of:

$$
h 0 l: h+l=2 \mathrm{n}, 0 k 0: k=2 \mathrm{n}
$$

uniquely determine the space group to be: $P 2_{1} / n(\# 14)$
The data were collected at a temperature of $-179 \pm 1^{\circ} \mathrm{C}$ to a maximum 2θ value of 54.9°. A total of 720 oscillation images were collected. A sweep of data was done using ω oscillations from -110.0 to 70.0° in 0.50° steps. The exposure rate was $4.0\left[\mathrm{sec} . /^{\circ}\right]$. The detector swing angle was -19.86°. A second sweep was performed using ω oscillations from -110.0 to 70.0° in 0.5° steps. The exposure rate was $4.0\left[\mathrm{sec} . /^{\circ}\right]$. The detector swing angle was -19.86°. The crystal-to-detector distance was 45.00 mm . Readout was performed in the 0.141 mm pixel mode.

e. Data Reduction of DBT

Of the 5762 reflections that were collected, 1919 were unique ($R_{\mathrm{int}}=0.0698$); equivalent reflections were merged. Data were collected and processed using CrystalClear (Rigaku). ${ }^{1}$

The linear absorption coefficient, ω, for Mo-K α radiation is $3.123 \mathrm{~cm}^{-1}$. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.844 to 0.954 . The data were corrected for Lorentz and polarization effects. A correction for secondary extinction ${ }^{2}$ was applied (coefficient $=14.708000$).

f. Structure Solution and Refinement of DBT

The structure was solved by direct methods ${ }^{2}$ and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement ${ }^{3}$ on F^{2} was based on

1919 observed reflections and 96 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:
$R_{1}=\Sigma\left(\left|F_{o}\right|-\left|F_{c}\right|\right) / \Sigma\left|F_{o}\right|=0.0489$
$w R_{2}=\left[\Sigma\left(w\left(F_{o}{ }^{2}-\mathrm{F}_{c}{ }^{2}\right)^{2}\right) / \Sigma w\left(F_{o}{ }^{2}\right)^{2}\right]^{1 / 2}=0.1317$
The goodness of fit ${ }^{4}$ was 1.13 . Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.76 and $-0.31 \mathrm{e} / \AA^{3}$, respectively.

Neutral atom scattering factors were taken from International Tables for Crystallography (IT), Vol. C, Table 6.1.1.4 ${ }^{5}$. Anomalous dispersion effects were included in $F_{\text {calc }}{ }^{6}$; the values for Δf^{\prime} and $\Delta f^{\prime \prime}$ were those of Creagh and McAuley ${ }^{7}$. The values for the mass attenuation coefficients are those of Creagh and Hubbell. ${ }^{8}$ All calculations were performed using the CrystalStructure ${ }^{9}$ crystallographic software package except for refinement, which was performed using SHELXL Version 2014/7. ${ }^{10}$

References of X Ray Crystallographic Analysis

1. CrystalClear: Data Collection and Processing Software, Rigaku Corporation, 1998-2015. Tokyo, Japan.
2. SIR92: A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, J. Appl. Cryst. 1993, 26, 343-350.
3. Least Squares function minimized: (SHELXL Version 2014/7)
$\Sigma w\left(F o^{2}-F c^{2}\right)^{2}$ where: $w=$ Least Squares weights.
4. Goodness of fit is defined as:
$\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} /\left(N_{\mathrm{o}}-N_{\mathrm{v}}\right)\right]^{1 / 2} \quad$ where: $N_{\mathrm{o}}=$ number of observation, $N_{\mathrm{v}}=$ number of variables
5. International Tables for Crystallography,.C. (Ed.: A.J.C. Wilson), Kluwer Academic Publishers, Dordrecht, Netherlands, Table 6.1.1.4, 1992, 572.
6. J. A. Ibers and W. C. Hamilton, Acta Crystallogr., 1964, 17, 781.
7. D. C. Creagh, W. J. McAuley in International Tables for Crystallography, C, (Ed.: A.J.C. Wilson), Kluwer Academic Publishers, Boston, Table 4.2.6.8, 1992, 219-222.
8. D. C. Creagh, J. H. Hubbell in International Tables for Crystallography, C, (Ed.: A.J.C. Wilson), Kluwer Academic Publishers, Boston, Table 4.2.6.8, 1992, 200-206.
9. CrystalStructure 4.3: Crystal Structure Analysis Package, Rigaku Corporation, 2000-2018, Tokyo, Japan.
10. SHELXL Version 2014/7: G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.
a)

b)

C-C 3.270

C-C 3.559
d)

H-H 2.672, C-C 3.980

Fig. S1 Comparison of single crystals of DNT and DBT by the distance (\AA) between stacked aromatics of a) DNT and c) BDT, and by the distance (\AA) between neighboring molecules of b) DNT and d) BDT.

1. Synthesis of dinaphtho $\left[2,1-b: 1^{\prime}, 2^{\prime}-d\right]$ thiophene (DNT)

To a solution of 1,1'-binaphthol ($20.0 \mathrm{~g}, 69.9 \mathrm{mmol}$) in DMF (150 mL), was added sodium hydride (55% oil dispersion) ($6.7 \mathrm{~g}, 153.7 \mathrm{mmol}$) portionwise. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, and then N, N-dimethylcarbamoyl chloride (purity 95%, 20.0 g 153.7 mmol) was added. The reaction solution was stirred for 1 h at $85^{\circ} \mathrm{C}$, cooled to room temperature and poured into 1% aqueous $\mathrm{KOH}(500 \mathrm{~mL})$ with vigorous stirring. The precipitate was collected by filtration, washed with water and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was dried over MgSO_{4}, and solvent was removed in vacuo. The crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-petrolium ether to obtain BNpOT ($27.4 \mathrm{~g}, 85.0 \%$). mp. 205.9 - $206.8^{\circ} \mathrm{C}$ (lit. mp, 200 $-209.5^{\circ} \mathrm{C}$). Next, BNpOT ($6.0 \mathrm{~g}, 13.1 \mathrm{mmol}$) was dissolved in sulfolane (12 mL), heated for 2 h at $260^{\circ} \mathrm{C}$ with vigorous stirring, and cooled to room temperature. The reaction solution was poured into water, and the precipitate was collected by filtration. After drying under reduced pressure the precipitate was dissolved in CHCl_{3}, decolorized over active carbon and recrystallized from $\mathrm{CHCl}_{3}-n$-hexane to give DNT ($2.6 \mathrm{~g}, 71.0 \%$) as a white powder. m.p. $207.5-208.3^{\circ} \mathrm{C}$ (lit. ${ }^{1}$ m.p. 208-209 ${ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were in agreement with the reported data. ${ }^{2}$

References

1. V. N. Gogte, V. S. Palkar and B. D. Tilak, Tetrahedron Lett., 1960, 1, 30-34.
2. T. Zhang, G. Deng, H. Li, B. Liu, Q. Tan and B. Xu, Org. Lett., 2018, 20, 5439-5443.
3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

Fig. S2. ${ }^{1} \mathrm{H}$ NMR spectrum of FDNT ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, ppm) .

Fig. S3 ${ }^{13} \mathrm{C}$ NMR spectrum of FDNT $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right.$, ppm).

Fig. S4 ${ }^{1} \mathrm{H}$ NMR spectrum of HMDNT $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \mathrm{ppm}\right)$.

Fig. S5 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{HMDNT}(150 \mathrm{MHz}, \mathrm{CDCl} 3,298 \mathrm{~K}$, ppm).

Fig. S6 ${ }^{1} \mathrm{H}$ NMR spectrum of VDNT ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \mathrm{ppm}$).

Fig. S7 ${ }^{13} \mathrm{C}$ NMR spectrum of VDNT $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K} . \mathrm{ppm}\right)$

Fig. S8 ${ }^{1} \mathrm{H}$ NMR spectrum of DNTMA $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}, \mathrm{ppm}\right)$.

Fig. S9 ${ }^{13} \mathrm{C}$ NMR spectrum of DNTMA $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right.$, ppm $)$.

Fig. S10 ${ }^{1} \mathrm{H}$ NMR spectrum of PVDNT ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Fig. S11 ${ }^{13} \mathrm{C}$ NMR spectrum of PVDNT ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Fig. S12 ${ }^{1} \mathrm{H}$ NMR spectrum of PDNTMA $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Fig. S13 ${ }^{13} \mathrm{C}$ NMR spectrum of PDNTMA ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Fig. S14 Differential scanning calorimetric analysis of PVDNT.

Fig. S15 Differential scanning calorimetric analysis of PDNTMA.

