Regulating Metal Nodes of 1D Conjugated Coordination Polymers

for Enhancing the Performance of Sodium-Ion Batteries

Kun Fan,^a Chenyang Zhang,^a Yuan Chen,^a Guoqun Zhang,^a Yanchao Wu,^a Jincheng Zou^a and Chengliang Wang^{a*}

^a School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China. E-mail: <u>clwang@hust.edu.cn</u>

Figure S1. Energy dispersive X-ray spectrum (EDS-mapping) of Mn-DHBQ, indicating that the elements are evenly distributed in the material.

Figure S2. Energy dispersive X-ray spectrum (EDS-mapping) of Zn-DHBQ, indicating that the elements are evenly distributed in the material.

Figure S3. Energy dispersive X-ray spectrum (EDS-mapping) of Ni-DHBQ, indicating that the elements are evenly distributed in the material.

Figure S4. The FT-IR spectra of the free ligand and CCPs M-DHBQ (M=Ni, Mn, Zn).

Figure S5. XRD patterns of **M-DHBQ** and the simulated XRD patterns by using the proposed crystal structures (CCDC 728411, 752734 and 752735 for **Mn-DHBQ**, **Zn-DHBQ** and **Ni-DHBQ**, respectively).

Figure S6. TGA curves of M-DHBQ (M=Ni, Mn, Zn).

Figure S7. Discharge-charge voltage profiles of **Zn-DHBQ** at a current density of 0.1 A g⁻¹.

Figure S8. Cycling performance of super P at a rate of 0.1 A g^{-1} at the voltage ranges of (a) 0.01-2.5 V (vs. Na/Na⁺) and (b) 0.5-2.3 V (vs. Na/Na⁺), which showed reversible capacity of about 140 mAh g^{-1} and 53 mAh g^{-1} , respectively.

Figure S9. Discharge-charge voltage profiles of Mn-DHBQ at different current densities.

Figure S10. Charge-discharge profiles of Zn-DHBQ electrodes at different current densities.

Figure S11. Charge-discharge profiles of Ni-DHBQ electrodes at different current densities.

Figure S12. *I*-V curves for **M-DHBQ** (M= Mn, Zn and Ni). The electric conductivity of **Ni-DHBQ** was 3.8×10^{-7} S m⁻¹, which was higher than **Mn-DHBQ** (3.9×10^{-8} S m⁻¹) and **Zn-DHBQ** (3.1×10^{-8} S m⁻¹).

Figure S13. (a) CV curves of **Mn-DHBQ** electrode at different scan rates. (b) The corresponding plots of log(i) *vs.* log(v) for CV curves of **Mn-DHBQ** electrode at different scan rates.

Figure S14. (a) CV curves of **Zn-DHBQ** electrode at different scan rates. (b) The corresponding plots of log(i) vs. log(v) for CV curves of **Zn-DHBQ** electrode at different scan rates.

Figure S15. The corresponding plots of log(i) *vs*. log(v) for CV curves of **Ni-DHBQ** electrode at different scan rates.

Figure S16. CV curves showing the capacitive contribution (the filled part) of the Ni-DHBQ at a scan rate of (a) 0.5, (b) 5 mV s⁻¹.

Figure S17. (a) GITT potential response curve with time. (b) The plot of Na-ion diffusivity calculated from GITT methods versus potential of **Mn-DHBQ** electrode.

Figure S18. (a) GITT potential response curve with time. (b) The plot of Na-ion diffusivity calculated from GITT methods versus potential of **Zn-DHBQ** electrode.

Figure S19. Ex-situ FT-IR spectra of (a) Mn-DHBQ and (b) Zn-DHBQ electrode recorded at different potentials.

Figure S20. Ex-situ XPS O 1s spectra of Ni-DHBQ.

Figure S21. Ex-situ XPS Ni 2p spectra of Ni-DHBQ.

Figure S22. (a) Ex-situ XPS Mn 2p spectra of Mn-DHBQ. (b) Ex-situ XPS Zn 2p spectra of Zn-DHBQ.

Figure S23. Ex-situ EPR spectra of Zn-DHBQ electrode recorded at different potentials during the first and second cycle.

Figure S24. Possible charge storage mechanism of M-DHBQ.

Figure S25. Ex-situ PXRD of Ni-DHBQ electrode recorded at different potentials.

Figure S26. SEM images of the Zn-DHBQ electrode recorded at different potentials.

Figure S27. SEM images of the **Ni-DHBQ** electrode recorded at 2.3 V. The **Ni-DHBQ** electrode was first discharge to 0.5 V and then charge to 2.3 V. The particle size kept stable after cycling.

Figure S28. Rate capability of the Ni-DHBQ in the 0.5-2.3 V range.

Figure S29. Cycling performance of **Ni-DHBQ** electrodes at a current density of 1 A g^{-1} in the 0.5-2.3 V range.

Туре	Electrode	Operation voltage window (V)	Low-rate capacity (mAh g ⁻¹) (Current (mA g ⁻¹))	High-rate capacity (mAh g ⁻¹) (Current (mA g ⁻¹))	Reversible capacity (mAh g ⁻¹) (Current (mA g ⁻¹), cycle number)	Ref.
Small Molecule	DHBQDS (Na ₂ DHBQ)	0.8-2.5	290 (20)	68 (1000)	167 (200, 300)	1
	Na ₂ DHBQ	1.0-2.0	265 (29)	/	/	2
	Na ₂ DHBQ	1.0-2.0	288 (29)	/	40 (29, 10)	. 3
	Na ₂ DHBQ/CNT	1.0-2.0	259 (29)	142 (2030)	191 (290, 30)	
	Na ₂ DHBQ	0.5-2.5	265 (29.1)	159 (1455)	231 (29.1, 50) 181 (291, 300)	4
Organic Polymer	Na ₂ PDS (Na ₂ PDHBQS)	0.01-3	224.9 (100)	131 (1000)	183 (100, 150) 138 (500, 500)	5
	Na ₂ PDHBQS	0.8-2.2	123 (100)	83 (1000)	121 (100, 150)	
	Na ₂ PDHBQS/RGO	0.8-2.2	179 (100)	147 (1000)	183 (100, 150) 110 (1000, 500)	6
CCPs	Mn-DHBQ	0.01-2.5	261 (100)	129 (2000)	230 (100,150) 112 (1000, 500)	This work
	Zn-DHBQ	0.01-2.5	212 (100)	109 (2000)	167 (100,150) 93 (1000, 500)	This work
	Ni-DHBQ	0.01-2.5	424 (100)	267 (2000)	321 (100,150) 243 (1000, 500)	This work
		0.5-2.3	320 (100)	215 (2000)	215 (100, 150) 140 (5000, 500)	This work

Table S1. Electrochemical performance of DHBQ-based electrode materials for SIBs.

References

- C. Luo, J. Wang, X. Fan, Y. Zhu, F. Han, L. Suo and C. Wang, *Nano Energy* 2015, 13, 537-545.
- 2 X. Wu, S. Jin, Z. Zhang, L. Jiang, L. Mu, Y. S. Hu, H. Li, X. Chen, M. Armand, L. Chen and X. Huang, *Sci Adv* 2015, **1**, e1500330.
- 3 X. Wu, J. Ma, Q. Ma, S. Xu, Y.-S. Hu, Y. Sun, H. Li, L. Chen and X. Huang, J. *Mater. Chem. A* 2015, **3**, 13193-13197.
- 4 Z. Zhu, H. Li, J. Liang, Z. Tao and J. Chen, Chem. Commun. 2015, 51, 1446-1448.
- 5 D. Wu, Y. Huang and X. Hu, Chem. Commun. 2016, 52, 11207-11210.
- 6 A. Li, Z. Feng, Y. Sun, L. Shang and L. Xu, J. Power Sources 2017, 343, 424-430.