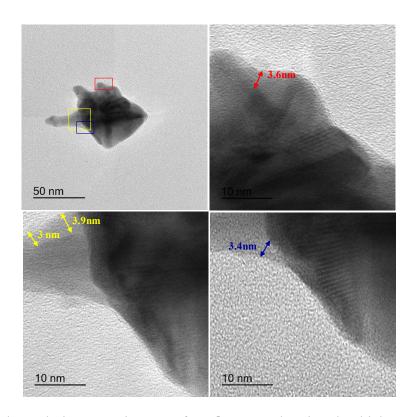
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021


Interfacial design of gold/silver core-shell nanostars for plasmon enhanced photocatalytic coupling of 4-aminothiophenol

Gagandeep Kaur¹, Swati Tanwar¹, Vishaldeep Kaur¹, Rathindranath Biswas², Sangeeta Saini³, Krishna Kanta Haldar²* and Tapasi Sen¹*

¹Institute of Nano Science and Technology, Mohali, 160062, India. E-mail: tapasi@inst.ac.in

²Department of Chemistry, Central University of Punjab, Bathinda, 151001, India. E-mail: krishnakanta.haldar@gmail.com

³Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India.

Figure. S1 High resolution TEM images of Au@Ag NS showing the thickness of Ag over the preformed Au NSs.

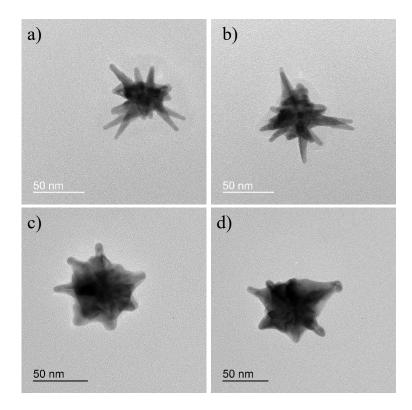


Figure. S2 TEM images of (a, b) Au NSs and (c, d) Au@Ag NSs.

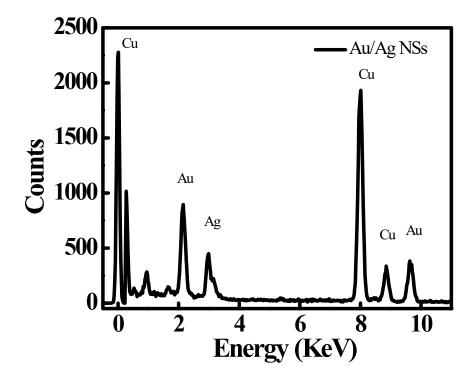


Figure. S3 TEM-EDX (Energy dispersive X-ray) spectrum of Au@Ag NSs.

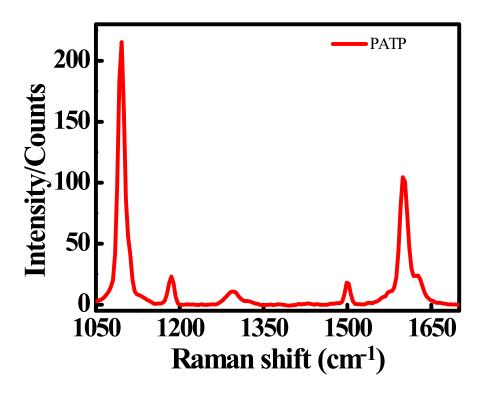
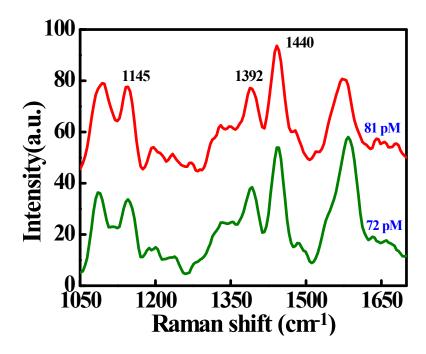
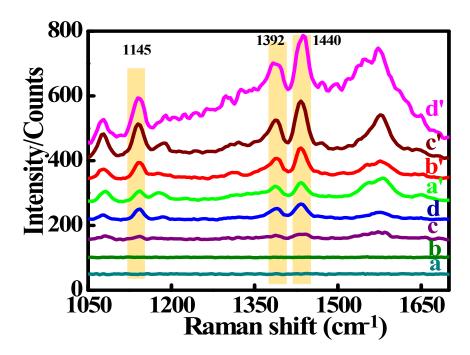
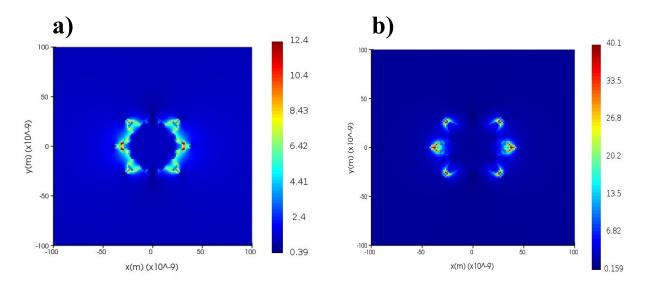
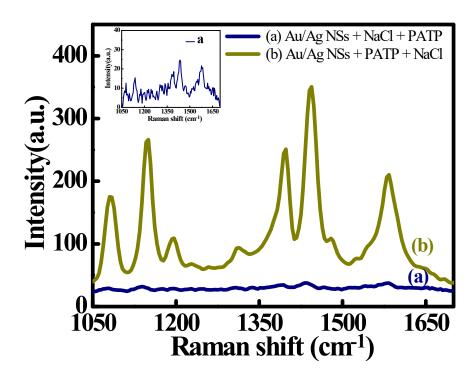




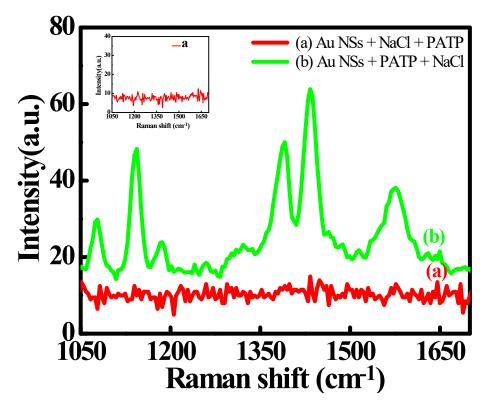

Figure. S4 Normal Raman spectrum of solid PATP.

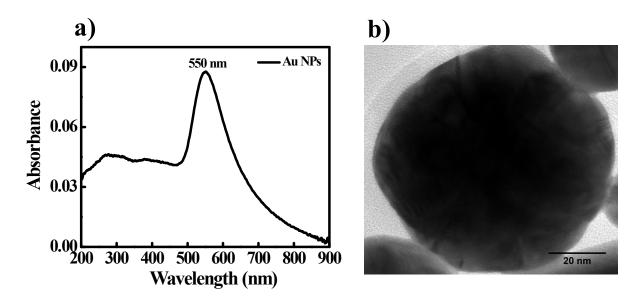
Figure. S5 Concentration dependent SERS spectra of DMAB formed from PATP at different concentrations of Au/Ag nanostars under acidic conditions.

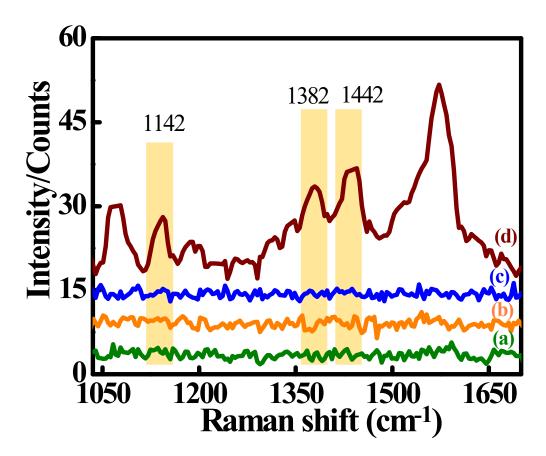

Figure. S6 SERS spectra of DMAB formed from PATP at incubation time of 512s using 45 pM concentration of Au NS (a), and Au/Ag NSs (a'); 63 pM concentration of Au NS (b), and Au/Ag NSs (b'); 81 pM concentration of Au NS (c), and Au/Ag NSs (c'); and 180 pM concentration of Au NS (d), and Au/Ag NSs (d').

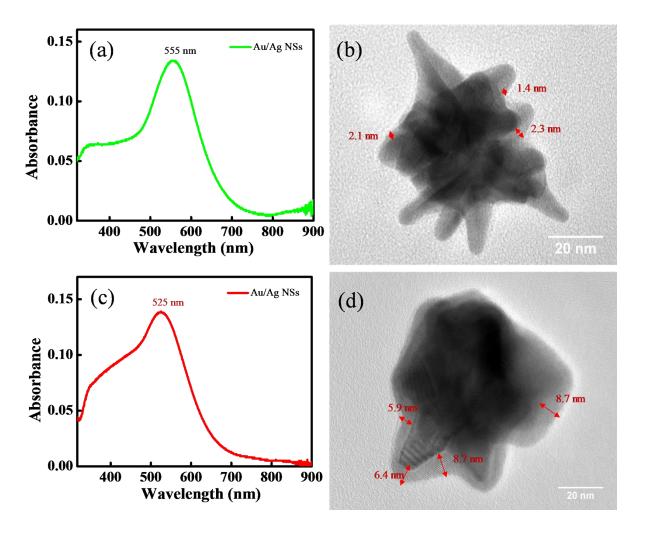

Figure. S7 Magnified SERS spectra of DMAB formed from PATP at incubation time of 512s using 45 pM concentration of Au NS (a), 63 pM concentration of Au NS (b), 81 pM concentration of Au NS (c), and 180 pM concentration of Au NS (d).

FDTD (finite difference time domain) simulation.


The electric field magnitude, |E| is computed through three-dimensional finite-difference time-domain (FDTD) modelling for Au nanostar as well as for Ag coated Au nanostar using commercial-grade simulator Lumerical Software (https://www.lumerical.com/products/-fdtd/). The plots in Figure S8 indicate increase in |E| at tips for Ag coated Au nanostar as compared to uncoated pure Au nanostar. The enhancement in electric field as obtained from Au core/Ag shell NS compared to pure Au NS will result in higher SERS enhancement of DMAB formed from PATP for Au core/Ag shell nanostar than that of Au nanostar which are in good agreement with experimental findings.


Figure. S8 The magnitude of electric field |E| in xy plane passing through the centre of nanostar at λ =540 nm for (a) Au-nanostar (b) silver coated Au-nanostar. A plane wave source has been used for FDTD calculations. The incident wave-vector is perpendicular to plotted xy cross-section. Note the difference in color-coding scale for both the plots.


Figure. S9 SERS spectra of DMAB formed from PATP at 180pM concentration of Au/Ag NSs at a) zero second incubation time and b) 512 seconds incubation time.


Figure. S10 SERS spectra of DMAB formed from PATP at 180pM concentration of Au NSs at a) zero second incubation time and b) 512 seconds incubation time.

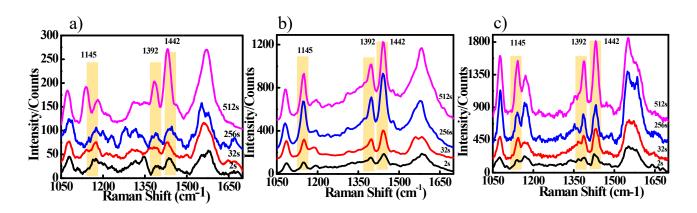
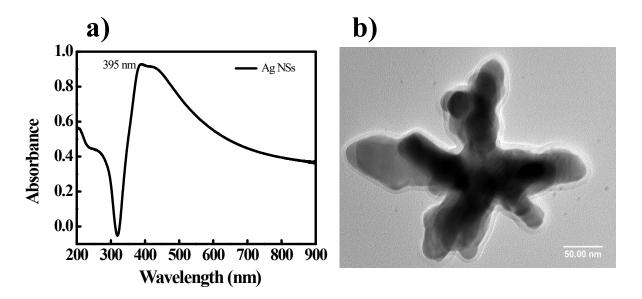
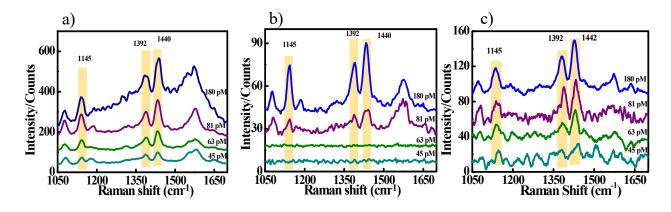
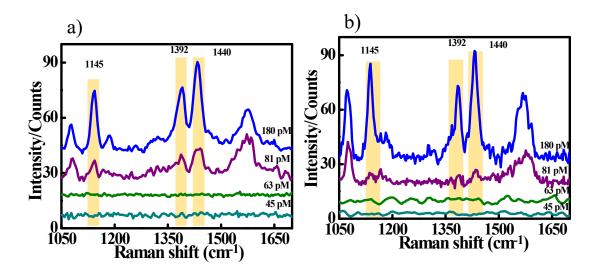

Figure. S11 a) UV-Vis absorption spectrum b) TEM image of as prepared spherical Au nanoparticles.

Figure. S12 SERS spectra of DMAB formed from PATP using spherical Au NPs at 45 pM (a), 63 pM (b), 81 pM (c), 180 pM (d) concentration at incubation time 512s.

Figure. S13 UV-Vis absorption spectra and TEM images of Au/Ag NSs with lower Ag coating (a,b) and with higher Ag coating (c,d).

Figure. S14 Time dependent SERS spectra of DMAB formed from PATP at 36 pM concentration of Au/Ag NSs with a) lower Ag coating $(1.9 \pm 0.5 \text{ nm})$, b) moderate Ag coating $(3.5 \pm 0.5 \text{ nm})$, and c) higher Ag coating $(7 \pm 0.5 \text{ nm})$.

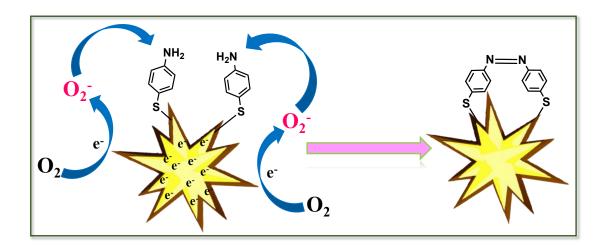

Figure. S15 a) UV-Vis absorption spectrum, and b) TEM image of as prepared Ag NSs.

Figure. S16 SERS spectra of DMAB formed from PATP at incubation time of 512s using different concentrations of a) Au/Ag NSs, b) Au NSs, and c) Ag NSs.

Figure. S17 SERS spectra of DMAB formed from PATP at incubation time of 512s using different concentrations of Au NSs at a) 532 nm laser, and b) 633 nm laser.

Figure. S18 Schematic illustration for the reaction mechanism depicting the oxidation of PATP into DMAB.

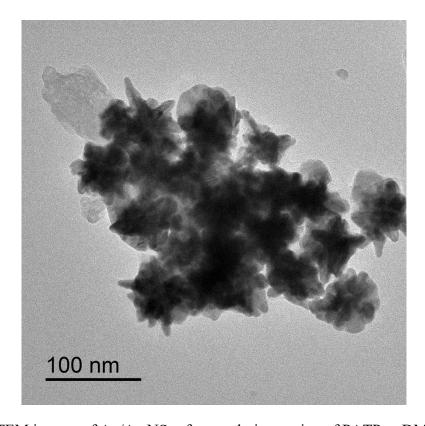


Figure. S19 TEM images of Au/Ag NSs after catalytic reaction of PATP to DMAB.

Concentration calculation of Au NSs.

For the determination of concentration of Au/Ag nanostars, we had exploited beer-lambert's law as described in equation (1).

Absorbance (A) =
$$\mathcal{E}$$
cl (1)

Where \mathcal{E} is extinction coefficient of Au NSs $(20.1 \times 10^8 \text{ M}^{-1} \text{ cm}^{-1} \text{ for LSPR-}710 \text{ nm})^1$, c is concentration and l is path length (1 cm).

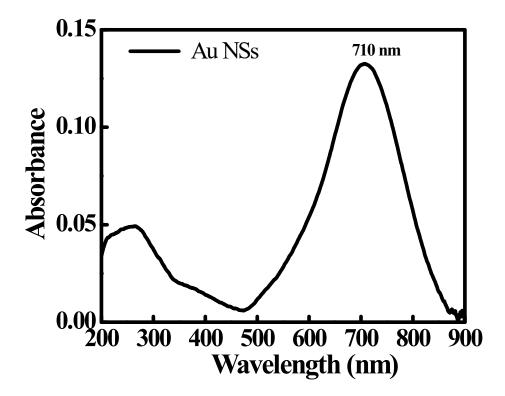


Figure. S20 UV-Vis absorption spectrum of Au nanostars after washing the reaction mixture.

The concentration of Au NSs was found to be 13373 pM by using the equation (1)

The total concentrations of Au NSs (Au/Ag NSs) used for the photocatalytic conversions of PATP into DMAB were 180, 81, 72, 63, 54, 45, 36, 27, 18, 9 pM in total reaction volume of $820 \mu l$.

Now, we have assumed that all the Au nanostars are coated with Ag shell so the concentration of the Au/Ag nanostars is same as the Au nanostars.

Concentration calculation of Ag NSs.

The concentration of Ag NSs was calculated according to the method given by K. Kalishwaralal et al.² The concentration of Ag NSs was found to be 0.4 nM which is consistent with the report published by Oliveira et al.³ Different concentrations of Ag NSs were attained through centrifugation at 2500 rcf for 10 minutes with temperature of 4°C. The SERS spectra of DMAB formed from PATP were recorded using Ag NSs at different concentrations such as 180, 81, 63, 45 pM in total reaction mixture of 820 μl.

Details of SERS spectra measurement in inert atmosphere.

For the dimerization reaction of PATP into DMAB, whether atmospheric oxygen is required or not, we had performed the control reaction in absence of oxygen i.e. in inert atmosphere. For this, two neck round bottom flask was attached with a balloon filled with nitrogen gas attached with one neck of r.b.f. The r.b.f was filled with nitrogen gas and other neck was covered with septum. After that, with help of needle attached with syringe, PATP solution and Au/Ag nanostars solution were added through neck covered with septum. After different time intervals, the solution was precipitated with NaCl solution which is generally used for creating aggregated nanostructures. Upon addition of NaCl, solid aggregates were formed and collected through centrifugation and these aggregates were used for SERS measurement.

Table S1 ICP-MS (Inductively coupled plasma mass spectrometry) of Au/Ag nanostars.

Au and Ag concentrations are determined from ICP-MS and their atomic ratio is calculated by dividing the Au and Ag concentration with molar mass of Au (196.97 g mol⁻¹) and Ag (107.87g mol⁻¹)

Nanoparticles	Au conc. (mg/l)	Ag conc. (mg/l)	Atomic percentage
Au/Ag NSs	0.42	0.22	Au: 51.1% and Ag: 48.9%

Table S2 The atomic percentage of Au and Ag in Au/Ag NSs from TEM- Energy dispersive X-ray (EDX) analysis is shown below.

Nanoparticles	Atomic percentage (%) of Au and Ag	
Au/Ag NSs (lower coating)	wer coating) Au: 70.84% Ag: 29.149	
Au/Ag NSs (higher coating) Au: 41.15%		Ag: 58.85%

 Table \$3
 ATR-FTIR frequency data (cm⁻¹) of PATP and DMAB.

Assignments	PATP	DMAB	References
	ATR-FTIR frequency	ATR-FTIR frequency	
	(cm ⁻¹)	(cm ⁻¹)	
vN-H	3418, 3320, 3206	3404, 3318	4, 5
νС-Н	3021	2976	6
	2982	2828	
vS-H	2597	Not ditected	4, 7
	2560		
vC=C	1587	1653	8
	1488	1491	
vN=N	-	1444	4
		1389	
vC-N	1273	1367	9, 10
	1174	1248	
	1123	1160	
	1084		
vC-S	1006	1050	11
	952	1031	

νC-H rocking	816	742	12
and out-of-plane bending	614	698	
		618	

Table S4 Shows the comparative studies of the catalytic conversion of PATP to DMAB using multi metallic nanostructures.

Photo catalytic reaction	Photocatalyst	Conditions	Conclusions	Reference
PATP	Silver thin films evaporated on CaF ₂ as silver substrate	0.1 mM solution of PATP adsorbed on silver substrate SERS and SERIA were recorded	Enhancement in peaks and some new peaks were originated called as b ₂ modes	13
PATP	Au(core)/Cu(she ll) nanoparticles	Au(core)/Cu(shell) nanoparticles were placed into an ethanolic solution of p- aminothiophenol (1.0mm), for 24 h, and then removed	b ₂ and a ₁ modes are all strong in intensity. Theoretical analysis was carried out to calculate electromagnetic and chemical enhancement.	14
PATP	silver-gold bimetallic hollow nanostructures	Silver-gold bimetallic structures deposited onto the silane modified glass soaked into $10^{-4}M$ p -ATP ethanol solution for around 2 h 514.5 nm and 1064 nm excitation.	Assigned new peaks as b ₂ modes and calculated enhancement factor (EF)	15
PATP	Gold nanoparticles	p-ATP molecules were adsorbed on as-prepared substrates by spin- coating 5 µl of 1M solution on 2–2.5 cm ²	annealed gold nanoparticles for SERS experiments as well as a LSPR	16

		substrate area.	based sensor for biomolecule detection	
			nanoparticle junctions as the	
			important sites for Raman enhancement	
PATP	Ag NPs/PATP/Au NPs PATP molecules sandwiched between 85 nm sized Ag NPs and Au NPs with various shapes, including rods, tetrapods, spheres, cubes and dog-bones	ITO slides modified by a layer of Au NPs were immersed in 10 ⁻⁴ M PATP ethanol solutions for 12 h and immersed in Ag sols overnight	EM mechanism gives b ₂ modes and EF was 10 ⁸ b2 mode in SERS is characteristic of CT between the metal NPs and PATP molecules and may be likely greatly enhanced by CT from the Ag to Au NPs by tunneling through the PATP molecules.	17
PATP	Silver nanoplates on glass, gold and silver substrate	p-aminothiophenol (p-ATP) SAMs sandwiched in silver nanoplates and smooth macroscopic gold and silver substrates and SERS recorded at 514.5, 794.4, and 1064 nm excitations	strong electromagnetic coupling between the LSP of silver nanoplates and the SPP of the smooth macroscopic gold or silver EF values on the junctions are estimated to be as large as 10 ⁴ - 10 ⁵ , which is 3-	18

			9 times larger than that on silver nanoplates deposited on glass	
PATP	Aggregates (size-200nm) of Au nanoparticle (13nm)	aggregation of AuNPs is induced by the addition of 2 mL of 2.6 µM p-aminothiophenol (p-ATP) to 2 mL of aqueous AuNP solution SERS – 785nm excitation	enhancement of the b2- symmetry bands occurs after 10 h enhancement of the b2 mode is attributed to the charge transfer (CT) between AuNPs and adsorbates,	19
PATP	PATP/Ag5 complex, PATP/Au5 complex, and Au5/PATP/Ag6 junction	514.4 and 632.8 nm	Theoretically predicted that selective enhancements of the b2 modes in SERS experiments should be due to the Herzberg—Teller mechanism via CT for metal/PATP complexes	20
PATP → DMAB	Ag nanoparticles (40nm)	PATP- 5uM 632.8 nm	acquisition time is at 27 min for SERS measurement. The SERS enhancement is on the order of M 4=9.0 X10 ⁸ when illuminated the incident light of wavelength 632.8 nm. The total chemical enhancements,	21

			including static chemical and resonant enhancements, are on the order of 10 ³ .	
PATP → DMAB	roughened Ag electrode.	potential dependent study of PATP on a roughened Ag electrode.	DMAB rather than PATP that gives the "b2 mode" signals laser used for the SERS excitation, can significantly induce the surface reaction of probed species.	22
PATP	AuNP-coated polymer substrate	PATP- 10 ⁻⁵ M	enormous b2- mode signal enhancement arose from the evaporationindu ced reorientation of 4- aminobenzeneth iol molecules adsorbed onto the AuNP surface	23
PATP → DMAB	Ag nanoparticle-molecule-Ag (or Au) film.	Ag and Au films were immersed in a 5×10 ⁻⁶ M solution of PATP in ethanol for more than 5h	experimental and theoretical evidence that DMAB can be produced from PATP by surface nanoparticle- molecule- photochemistry reaction in the	24

			Ag nanoparticle- molecule-Ag film DMAB cannot be produced from PATP in the junctions of a Ag nanoparticle- molecule-Au film. Electromagnetic enhancements 9 × 10 ⁵ times in the junctions of Ag nanoparticle- PATP-Ag/Au films. chemical enhancement on the Au film – factor of 60	
PATP → DMAB	Au, Ag, and Cu colloids	The solution of PATP in ethanol was introduced into capillary sample cells for normal Raman measurement. The solution of PATP in aqueous Au and Cu sols with 10-4M concentrations was introduced into capillary sample cells for SERS measurement	In the neutral and alkaline conditions, PATP first can be easily deprotonated, then the deprotonated PATP is oxidized to DMAB. While in the acidic condition, PATP is hard to be oxidized, because of abundant Hb in solution. When pH = 3, the surface	25

			photocatalysis reaction cannot occur; however under neutral and alkaline conditions (pH = 7 and 10), such a reaction does take place.	
PNTP → DMAB	Au nanoplates And Ag tip	TERS (silver coated atomic force microscope tip to both enhance the Raman signal and to act as the catalyst) (532 nm) and red (633 nm)	first-of-a-kind study of a single catalytic 'particle' in action. TERS technique is unique in enabling the study of molecule dynamics and chemical reactions on a nanometre scale,	26
PNTP →DMAB PATP → DMAB	Ag films in solutions with various pH values	514 and 633 nm lasers as exciting laser source to investigate the effect of photon's energy	theoretical and experimental investigation pH sensitivity of PATP reactions in acidic environment came from the amino group NH2.	27
PATP →DMAB→PA TP	single silver microsphere (1.5 mm in size)	completion in 5 min under N ₂ , no dimerization takes place	Dimerization of PATP into DMAB is actually induced	28

		1 1 0 77 0	1 00 :	
		whether O ₂ or H ₂ O, must be involved in the plasmon-driven conversion of PATP into DMAB	by efficient energy transfer (plasmonic heating) from surface plasmon resonance to the surface adsorbed 4ATP, where O ₂ (as an electron acceptor) is the necessary oxidant and H ₂ O (as a deprotonation agent) can enhance the reaction	
			DMAB reduced to 4ATP, results	
			from hot electron (from	
			surface plasmon decay) induction	
			at the metal surface to drive	
			the reduction	
			(bond scission) of the azo	
			group, where	
			H ₂ O or H ₂ can act as a proton	
			source.	
PNTP	Single Ag	532nm exciation	More	29
→DMAB	particle with a diameter of 2	Reaction time 5 minutes	enhancement is found under	
	um		532nm laser	
			than that under 633nm	
			higher power	
			supplied for the 633 nm laser	

			excitation can also dramatically accelerate the reaction	
PATP→ DMAB Role of oxygen	Au film/PATP/Au NPs Ag film/PATP/Au NPs Au film/PATP/Ag NPs	activation of 3O2 by illumination of laser light and correlated it to the chemical properties of Au and Ag 532, 632.8, and 785 nm laser	yield of DMAB in the order of 632.8 nm> 785 nm>532 nm	30
PATP → DMAB Role of hot electrons and holes	Ag nanoparticles	532nm laser	-Hole is revealed to be directly responsible for the oxidation of PATP to DMAB -role of O ₂ is determined as an electron capturer to produce isolated holes.	31
PATP → DMAB Activation of oxygen	Au@AgAu nanorattles, AgAu nanoshells and Au nanoparti cles	633nm laser	-hot electrons are transferred to adsorbed O ₂ molecules	32
PNTP →DMAB Ultrafast Surface- Enhanced Raman Probing	Ag nanoparticles	518 nm pump pulse excitation source	-Hot electrons are responsible for reduction	33

PNTP →DMAB→PA TP	Bifunctional Au/Ag nanoparticle- decorated silicon nanowire arrays (Au/Ag@SiNW As) were	633nm laser	-excellent enhancement of the SERS signal, -real-time chemical reaction monitoring	34
PATP → DMAB Photoactivated oxygen	spherical SiO ₂ core densely decorated with Ag nanocubes (NCs),	785nm laser	-First order rate -Activated oxygen	35
PNTP →DMAB Hot electrons	Au and Au@SiO2	633 nm laser irradiation	-Au and pNTP have the highest utilization efficiency of hot electrons in the chemical bond state, more direct and efficient transfer mode. Compared with physical adsorption, the utilization efficiency of hot electrons in chemisorption was higher	36
PATP With and without oxygen, different products are formed	Au@TiO2 Au nanoparticles, Au@SiO2 nanoparticles and Au@SiO2@TiO	EC-SERS experiments were carried out with and without oxygen, on a range of nanostructures	"hot holes" induced by SPs can act as oxidizing agents in place of activated oxygen to oxidize the	37

		T	DATED 11	
	2		PATP and the	
			nature of the	
			interfaces plays	
			a	
			critical role.	
			semiconductor	
			as the charge	
			transfer	
			mediator is	
			necessary for	
			"hot holes"	
			induced PATP	
			oxidation,	
			· ·	
			whose	
			action can also	
			improve hot	
			electron induced	
			oxygen	
			activation.	
PATP →	Au nanorods		oxygen that can	38
DMAB	Au hanorous		be activated by	
DIVIAD			· · · · · · · · · · · · · · · · · · ·	
Hot electrons			the energetic	
Tiot electrons			plasmon	
			electrons.	
PATP →	Ag	-different diol solvents	-the activated	39
DMAB	nanoparticles		oxidation	
DIMAD	nanoparticles	regulate the response of		
-Different		PATP to DMAB	pathway of	
solvents		golvent com avi-1-1	oxygen does not	
solvents		-solvent can quickly	play a leading	
-Holes are		capture the hot electrons	role in this	
		so that the remaining	catalytic	
responsible for		, so that the remaining	oxidation	
oxidation		holes can oxidize		
		PATP to form DMAB		
		-The ability to trap hot	-hot electrons	
		electrons is different due	are rapidly	
		to the difference in the	captured by the	
		position of the	solvent in the	
		functional groups in the	system for their	
		^	System for their	

		solvent, so that the photocatalytic reaction rate of the hole-oxidized PATP is different	own hydroxyl reduction, leaving holes to oxidize the amino group of PATP	
PATP → DMAB	multi-branched flowerlike gold (Au) nanostructures	785 nm excitation 10-5 M of PATP solution and Au nano Structure solution were mixed	strong electromagnetic field intensity around the sharp tips of the multibranched Au nanostructures	40
PNTP → PATP Role of valence band states and plasmonic enhancemnet	Au nanoparticles	633 nm laser	pseudo-first- order kinetics	41

PATP- para aminothiophenol

PNTP- para nitrothiophenol

DMAB- p,p'-dimercaptoazobisbenzene

References

- 1. H. de Puig, J. O. Tam, C.-W. Yen, L. Gehrke and K. Hamad-Schifferli, *J. Phys. Chem. C*, 2015, **119**, 17408-17415.
- 2. K. Kalishwaralal, S. BarathManiKanth, S. R. K. Pandian, V. Deepak and S. Gurunathan, *Colloids Surf. B: Biointerfaces*, 2010, **79**, 340-344.
- 3. M. J. Oliveira, P. Quaresma, M. Peixoto de Almeida, A. Araújo, E. Pereira, E. Fortunato, R. Martins, R. Franco and H. Águas, *Sci. Rep*, 2017, 7, 2480.
- 4. N. Karthik, S. Asha and M. Sethuraman, J. Sol-Gel Sci. Technol., 2016, 78, 248-257.
- 5. S.-H. Nam, T. K. Kim and J.-H. Boo, *Catal. Today*, 2012, **185**, 259-262.

- 6. F.-P. Du, N.-N. Cao, Y.-F. Zhang, P. Fu, Y.-G. Wu, Z.-D. Lin, R. Shi, A. Amini and C. Cheng, *Sci. Rep.*, 2018, **8**, 6441.
- 7. N. Masnabadi, M. H. Ghasemi, M. H. Beyki and M. Sadeghinia, *Res. Chem. Intermed.*, 2017, **43**, 1609-1618.
- 8. H. Li and Y. Li, *Nanoscale*, 2009, 1, 128-132.
- 9. R. Biswas, H. Singh, B. Banerjee and K. K. Haldar, *ChemistrySelect*, 2019, **4**, 4003-4007.
- 10. R. Biswas, S. Mete, M. Mandal, B. Banerjee, H. Singh, I. Ahmed and K. K. Haldar, *J. Phys. Chem. C*, 2020, **124**, 3373-3388.
- 11. L.-N. Liu, J.-G. Dai, T.-J. Zhao, S.-Y. Guo, D.-S. Hou, P. Zhang, J. Shang, S. Wang and S. Han, *RSC adv.*, 2017, **7**, 35075-35085.
- 12. M. Ali, A. Mansha, S. Asim, M. Zahid, M. Usman and N. Ali, *J. Spectrosc.*, 2018, **2018**.
- 13. M. Osawa, N. Matsuda, K. Yoshii and I. Uchida, *J. Phys. Chem.*, 1994, **98**, 12702-12707.
- 14. L. Cao, P. Diao, L. Tong, T. Zhu and Z. Liu, ChemPhysChem, 2005, 6, 913-918.
- 15. Y. Wang, H. Chen, S. Dong and E. Wang, *J. Chem. Phys*, 2006, **125**, 044710.
- 16. F. Toderas, M. Baia, L. Baia and S. Astilean, *Nanotechnology*, 2007, **18**, 255702.
- 17. X. Hu, T. Wang, L. Wang and S. Dong, *J. Phys. Chem. C*, 2007, **111**, 6962-6969.
- 18. Y. Wang, X. Zou, W. Ren, W. Wang and E. Wang, *J. Phys. Chem. C*, 2007, **111**, 3259-3265.
- 19. J. H. Yoon, J. S. Park and S. Yoon, *Langmuir*, 2009, **25**, 12475-12480.
- 20. M. Sun and H. Xu ChemPhysChem, 2009, 10, 392-399.
- 21. Y. Fang, Y. Li, H. Xu and M. Sun, *Langmuir*, 2010, **26**, 7737-7746.
- 22. Y.-F. Huang, H.-P. Zhu, G.-K. Liu, D.-Y. Wu, B. Ren and Z.-Q. Tian, *J. Am. Chem. Soc*, 2010, **132**, 9244-9246.
- 23. N.-J. Kim, J. Phys. Chem. C, 2010, 114, 13979-13984.
- 24. Y. Huang, Y. Fang, Z. Yang and M. Sun, J. Phys. Chem. C, 2010, 114, 18263-18269.
- 25. M. Sun, Y. Huang, L. Xia, X. Chen and H. Xu, *J. Phys. Chem. C*, 2011, **115**, 9629-9636.
- 26. E. M. van Schrojenstein Lantman, T. Deckert-Gaudig, A. J. G. Mank, V. Deckert and B. M. Weckhuysen, *Nat. Nanotechnol*, 2012, **7**, 583-586.
- 27. Y. Huang and B. Dong, Sci. China Chem., 2012, **55**, 2567-2572.

- 28. P. Xu, L. Kang, N. H. Mack, K. S. Schanze, X. Han and H.-L. Wang, *Sci. Rep*, 2013, **3**, 2997.
- L. Kang, P. Xu, B. Zhang, H. Tsai, X. Han and H.-L. Wang, *Chem. Commun*, 2013,
 49, 3389-3391.
- 30. Y.-F. Huang, M. Zhang, L.-B. Zhao, J.-M. Feng, D.-Y. Wu, B. Ren and Z.-Q. Tian, *Angew. Chem*, 2014, **53**, 2353-2357.
- 31. X. Yan, L. Wang, X. Tan, B. Tian and J. Zhang, Sci. Rep., 2016, 6, 30193.
- 32. A. G. M. da Silva, T. S. Rodrigues, V. G. Correia, T. V. Alves, R. S. Alves, R. A. Ando, F. R. Ornellas, J. Wang, L. H. Andrade and P. H. C. Camargo, *Angew. Chem*, 2016, 55, 7111-7115.
- 33. N. C. Brandt, E. L. Keller and R. R. Frontiera, *J. Phys. Chem. Lett*, 2016, **7**, 3179-3185.
- 34. P. Du, X. Zhang, H. Yin, Y. Zhao, L. Liu, Z. Wu and H. Xu, *Jpn. J. Appl. Phys*, 2018, **57**, 030308.
- 35. Q. Zhang and H. Wang, J. Phys. Chem. C, 2018, 122, 5686-5697.
- 36. J. Chong, L. Wang, Y. Fu, K. Chen, R. Li and M. Huang, *Phys. E: Low-Dimens. Syst. Nanostructures*, 2020, **115**, 113699.
- 37. C. Zhan, Z.-Y. Wang, X.-G. Zhang, X.-J. Chen, Y.-F. Huang, S. Hu, J.-F. Li, D.-Y. Wu, M. Moskovits and Z.-Q. Tian, *J. Am. Chem. Soc*, 2019, **141**, 8053-8057.
- 38. T. E. Tesema, B. Kafle and T. G. Habteyes, *J. Phys. Chem. C*, 2019, **123**, 8469-8483.
- 39. Y. Liu, D. Yang, Y. Zhao, Y. Yang, S. Wu, J. Wang, L. Xia and P. Song, *Heliyon*, 2019, **5**, e01545.
- 40. M. He, B. Cao, X. Gao, B. Liu and J. Yang, J. Mater. Res., 2019, 34, 2928-2934.
- 41. R. Schürmann, K. Ebel, C. Nicolas, A. R. Milosavljević and I. Bald, *J. Phys. Chem. Lett*, 2019, **10**, 3153-3158.