Electronic Supplementary Information

Growth of porous NiCoO₂ nanowire network for transparent-to-brownish grey electrochromic smart windows with wide-band optical modulation

Pengyang Lei,^{1,2} Jinhui Wang, ¹ Ping Zhang, ¹ Shiyou Liu,¹ Siyu Zhang,¹

Yuanhao Gao²*, Jiangping Tu³, Guofa Cai¹*

Author Address:¹Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China

² Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan, 461000, China

³ State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China E-mail: gyh-2007@sohu.com; caiguofa@henu.edu.cn

Name	Position	Raw Area	Area/(RSF*T*MFP)	%At Conc
C 1s	284.25	110475	27448	21.70
O 1s	529.25	579919	53375.8	42.19
Ni 2p	854.25	1.20163e+006	22587.3	17.85
Co 2p	779.25	1.10112e+006	23098.1	18.26

Table. S1 Quantitative analysis of the NCO-105-350

Table. S2 Comparison of electrochromic properties of NiCoO₂ films at different hydrothermal reaction temperatures.

Samples	t _c	t _b	ΔT
90 °C,1.5 h-350 °C,2 h	2.2 s	2.4 s	36.8%
95 °C,1.5 h-350 °C,2 h	3.5 s	3.4 s	44.2%
100 °C,1.5 h-350 °C,2 h	5.7 s	5.2 s	53.7%
105 °C,1.5 h-350 °C,2 h	6.8 s	6.7 s	64.2%
110 °C,1.5 h-350 °C,2 h	7.3 s	7.6 s	48.6%

Table. S3 Comparison of electrochromic properties of $NiCoO_2$ films growing at 105 $^\circ\!C$ at different

annealing temperatures.

Samples	t _c	t _b	ΔΤ
105 °C,1.5 h-250 °C,2 h	11.1 s	13.6 s	64.5%
105 °C,1.5 h-300 °C,2 h	12.2 s	12.2 s	69%
105 °C,1.5 h-350 °C,2 h	6.8 s	6.7 s	64.2%
105 °C,1.5 h-400 °C,2 h	16.0 s	18.4 s	63.8%

Fig. S1 (a) The TGA and DTG curve of NiCo(OH) $_2$ CO $_3$. (b) The XRD of 105 $^{\circ}$ C hydrothermal reaction

for 6 h followed by 2 h annealing in N_2 at 350 $^\circ\!C.$

Fig. S2 FESEM images of NiCo(OH)₂CO₃ were hydrothermally grown at (a) 90, (b) 95, (c) 100, (d)

105 and (e) 110 °C.

Fig. S3 FESEM images of (a) NCO-90 and (b) NCO-110 with the cross-section pattern inserted.

Fig. S4 The CV curve of $NiCoO_2$ films grown at different hydrothermal temperatures at the scan

rates of 10 mV s⁻¹ in the 1 M KOH electrolyte from 0 to 0.6 V (vs Ag⁺/Ag).

Fig. S5 The transmittance spectra of single nickel oxide and cobaltous oxide film in the colored (0.7 V vs Ag⁺/Ag, dotted line) and bleached (-0.2 V vs Ag⁺/Ag, full line) states.

Fig. S6 (a) Durability measurement of $NiCoO_2$ film at 550 nm by chronoamperometry and In situ spectroscopic. (b) SEM image of the $NiCoO_2$ film after cycle measurement.

Fig. S7 XRD (a) and SEM (b) images of 400 s MnO₂ deposited by a constant voltage of 0.5 V.

Fig. S8 (a) The transmittance spectra of MnO_2 prepared by electrodeposition in the colored (0.3 V) and bleached (-0.5 V) states. (b) The CV property of the assembled device was carried out at 10 mVs⁻¹ from -1.0 to 2.2 V.

Fig. S9 (a) Durability measurement of the electrochromic device at 550 nm by applying a square wave voltage of -1 and 2.2 V. (b) Transmittance at 550 nm of the electrochromic device under stimulation voltage of -1 and 2.2 V for 100 s, power off for 3,000 s. (c) A display of powering a digital watch by serial EESD.

Table. S4 A summary table of the electrochromic and energy storage properties of the $NiCoO_2$ film and other related works.

Electrochromic	c Optical	Switching	Optical	Capacitance	Dof
material	modulation	speed t_c/t_b	memory		Rel.
NiO	41.8% (650 nm)	1.6/1.9 s	Not	Not shown	19
	41.0% (050 mm)	1.0/ 1.5 5	shown	Not shown	15
NiO	68% (580 nm)	7.1/6.5 s	Not	Not shown	17
		,	shown		
NiO	63.6% (550 nm)	11.5/9.5 s	Not	192 mAh g ⁻¹	20
	, , , , , , , , , , , , , , , , , , ,	,	shown	at 1 A g ⁻¹	
NiO	40% (632.8 nm)	2.7/1.8 s	Not	Not shown	S1
	, , , , , , , , , , , , , , , , , , ,		shown		
Ni-BTA	61.3% (500 nm)	1.8/5 s	2400 s	168.1 mAh g ⁻¹	47
				at 1.7 A g ⁻¹	
Co ₃ O ₄	34% (633 nm)	1.8/1.4 s	Not	Not shown	21
			shown		
Co ₃ O ₄	Not shown	Not shown	Not	6.5 mAh g ⁻¹ 0.5	S2
			shown	A g-1	
Co ₃ O ₄	42% (633 nm)	2.5/2.0 s	Not	Not shown	16
			snown	100 7 Ab1	
rGO–Co _{(1–}	60% (500 nm)	22.1/22.1 s	NOT	188.7 mAn g -	S3
$_{x)}NI_{x}(OH)_{2}$			snown	at 1 A g^{-1}	
CO(OH) ₂ /NI(O	50% (500 nm)	1.5/1.1 s	NOT	170.4 mAn g^{-1}	S4
H) ₂			shown	at 2 A g ⁻¹	
NiCoO ₂	64.2% (550 nm),	6.8/6.7 s	24000 s	31.4 mAh g ⁻¹ at	This work
-	41.8% (1000 nm)			1 A g⁻¹	

(Some greater capacity have been achieved only on the metal based current collector).

Notes and references

- S1. Y. Chen, Y. Wang, P. Sun, P. Yang, L. Du and W. Mai, J. Mater. Chem. A, 2015, **3**, 20614-20618.
- S2. K. S. A. a. Irum Shaheen a, Camila Zequine b, Ram K. Gupta b, Andrew G. Thomas c, Mohammad Azad Malik, Energy, 2021, **218**, 119502.
- S3. F. Grote, Z. Y. Yu, J. L. Wang, S. H. Yu and Y. Lei, Small, 2015, **11**, 4666-4672.
- S4. Y. H. Lee, J. S. Kang, J. H. Park, J. Kang, I. R. Jo, Y. E. Sung and K. S. Ahn, Nano Energy, 2020, 72, 104720.