Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information

<u>Title:</u> Development of ultraviolet-B long persistent phosphors in Pr³⁺-doped garnets

<u>Author(s)</u>: Shao Yan, Yanjie Liang,* Jingwei Liu, Dongxun Chen, Shihai Miao, Jianqiang Bi and Kangning Sun

Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China.

*Corresponding author: YJ Liang

E-mail: yanjie.liang@sdu.edu.cn

Fig. S1 The Rietveld refinement of the powder XRD pattern of $Lu_3Al_5O_{12}:0.5\%Pr^{3+}$ (a), $Lu_3Al_3Ga_2O_{12}:0.5\%Pr^{3+}$ (b), $Lu_3Al_2Ga_3O_{12}:0.5\%Pr^{3+}$ (c), and $Lu_3Ga_5O_{12}:0.5\%Pr^{3+}$ (d).

Fig. S2 Effect of the Al/Ga ratio on the VRBE scheme in Lu₃Al_xGa_{5-x}O₁₂:Pr³⁺ (x = 0, 2, 3, 5) garnet compounds.

Fig. S3 (a) XRD patterns of Lu₃Al₃Ga₂O₁₂:x%Pr³⁺ (x = 0.5, 1, 2, 3, 5). (b) Photoluminescence emission spectra of Lu₃Al₃Ga₂O₁₂:x%Pr³⁺ (x = 0.5, 1, 2, 3, 5). The emission spectra were obtained upon 279 nm excitation. (c) Persistent luminescence decay curves of Lu₃Al₃Ga₂O₁₂:x%Pr³⁺ (x = 0.5, 1, 2, 3, 5) phosphors at room temperature. The decay curves were monitored at 302 nm after irradiation by a 254 nm UV lamp for 10 min. (d) TL curves of Lu₃Al₃Ga₂O₁₂:x%Pr³⁺ (x = 0.5, 1, 2, 3, 5). The samples were pre-irradiated by 254 nm UV lamp for 10 min.

Fig. S4 (a) Emission spectra of Lu₃Al₃Ga₂O₁₂:0.5%Pr³⁺,*m*%Cr³⁺ (m = 0.02, 0.05, 0.07, 0.10). All the emission spectra were obtained with the excitation wavelength of 279 nm light. (b, c) Persistent luminescence decay curves and persistent luminescence emission spectra of Lu₃Al₃Ga₂O₁₂:0.5%Pr³⁺, *m*%Cr³⁺ (m = 0.02, 0.05, 0.07, 0.10). The discs were monitored at 302 nm after pre-irradiated by 254 nm UV lamp for 10 min. The persistent luminescence emission spectra were obtained after 10 min decay. (d) Thermoluminescence curves of Lu₃Al₃Ga₂O₁₂:0.5%Pr³⁺,*m*%Cr³⁺ (m = 0, 0.02, 0.05, 0.07, 0.10).

Fig. S5 (a) 2D color maps of temperature-dependent emission spectra of LAGG:Pr phosphor. (b) Normalized emission intensities of LAGG:Pr monitored at 302 nm as a function of temperature. (c) 2D color maps of temperature-dependent emission spectra of LAGG:Pr,Cr phosphor. (d) Normalized emission intensities of LAGG:Pr,Cr monitored at 302 nm as a function of temperature.

Fig. S6 Persistent luminescence emission spectra of LAGG:Pr,Cr phosphor at different decay time. The sample was pre-irradiated by 254 nm UV lamp for 15 min.

Fig. S7 (a) Room temperature persistent luminescence decay curves of LAGG:Pr,Cr phosphor irradiated by monochromatic light between 240–400 nm for 5 min. The monitoring wavelength is 302 nm. The persistent luminescence intensity at 20 s was used to plot the persistent luminescence intensity as a function of excitation wavelength shown in Fig. S7b. (b) Persistent luminescence excitation spectrum (blue ball curve) and photoluminescence excitation spectrum (grey dash curve) of LAGG:Pr,Cr. The upper inset is the zoom-in spectrum between 310–400 nm.

Fig. S8 (a) Thermoluminescence curves of LAGG:Pr,Cr after pre-irradiated by 254 nm UV lamp for different times. (b) TL curves analyzed by the initial rise method in the LAGG:Pr,Cr phosphor. The depth of the shallowest occupied trap for each curve was estimated according to the slope of fitting red straight lines. (c) Thermoluminescence curves obtained on the LAGG:Pr,Cr sample underwent thermal cleaning at different temperatures. (d) Thermoluminescence curves with an excitation wavelength from 240 to 400 nm of LAGG:Pr,Cr. The sample was pre-irradiated for 10 min at each measured wavelength using a xenon arc lamp.

Fig. S9 (a) Photoluminescence excitation and emission spectra of LAGG:Pr,Cr phosphor at 77K. (b) Persistent luminescence decay curves of LAGG:Pr,Cr at 77 K after pre-irradiated by the monochromic light (260, 280, 300 nm, and 320 nm) for 10 min at 77 K. (c) The reciprocal of the persistent luminescence intensity (Γ^1) versus decay time (t) after irradiation by 260 nm and 280 nm UV light for 15 min at 77 K.

Fig. S10 (a) Normalized photoluminescence excitation and emission spectra of Lu₃. $_yGd_yAl_3Ga_2O_{12}:0.5\%Pr^{3+},0.07\%Cr^{3+}$ (y = 0, 0.3, 0.5, 0.7, 1). (b) Emission intensity at 313 nm as a function of Gd contents. (c) Persistent luminescence decay curves of Lu₃. $_yGd_yAl_3Ga_2O_{12}:0.5\%Pr^{3+},0.07\%Cr^{3+}$ (y = 0, 0.3, 0.5, 0.7, 1). The discs were preirradiated by a 254 nm UV lamp for 10 min. (d) Long-lasting persistent luminescence decay curve of Lu_{2.7}Gd_{0.3}Al₃Ga₂O₁₂:0.5\%Pr^{3+},0.07\%Cr^{3+} phosphor. Before measurement, the sample was irradiated by 254 nm UV lamp for 15 min to fully fill the traps.

Fig. S11 (a) Persistent luminescence decay curves monitored at 313 nm for LGAGG:Pr and LGAGG:Pr,Cr phosphors. The samples were pre-irradiated by a 254 nm UV lamp for 10 min. (b) TL curves of LGAGG:Pr and LGAGG:Pr,Cr phosphors after being irradiated by a 254 nm UV lamp for 10 min.

Fig. S12 (a) Persistent luminescence emission spectra of LGAGG:Pr,Cr phosphor after irradiated by different monochromic light for 10 min. (b, c) Persistent luminescence decay curves of LGAGG:Pr,Cr measured at different temperatures from 77 K to 325 K. The curves were monitored at 313 nm (b) and 502 nm (c) after irradiation by 340 nm monochromic light for 10 min.

Host lattice	U(6,A)	$E^{4f}_{Eu^{2^+}} \\$	$E^{4f}_{Eu^{3^+}}$	E _{Eu³⁺,CT}	$E_{\rm V}$	E ^{ex}	E _{CV}	E _C	$E^{4f}_{Pr^{3^+}}$	$E_{Pr^{3+}}^{5d}$
Lu ₃ Al ₅ O ₁₂	6.8	-3.97	-10.77	5.65	-9.62	7.35	7.94	-1.68	-7.38	-3.10
Lu ₃ Al ₃ Ga ₂ O ₁₂	6.8	-3.97	-10.77	5.49	-9.46	6.85	7.40	-2.07	-7.38	-3.00
Lu ₃ Al ₂ Ga ₃ O ₁₂	6.8	-3.97	-10.77	5.40	-9.37	6.50	7.02	-2.35	-7.38	-2.97
Lu ₃ Ga ₅ O ₁₂	6.8	-3.97	-10.77	5.00	-8.97	6.00	6.48	-2.49	-7.38	-2.83

Table S1 Experimental and computational data used to construct the VRBE diagram of the Lu₃(Al,Ga)₅O₁₂ series garnet compounds (in eV).

Sample	$Lu_3Al_5O_{12}$: Pr^{3+}	$Lu_3Al_3Ga_2O_{12}{:}Pr^{3+}$	$Lu_3Al_2Ga_3O_{12}{:}Pr^{3+}$	$Lu_3Ga_5O_{12}{:}Pr^{3+}$
Space group	Ia-3d	Ia-3d	Ia-3d	Ia-3d
$\alpha = \beta = \gamma$ (°)	90	90	90	90
a= b= c (Å)	11.92026(4)	12.02269(8)	12.08188(7)	12.187200(26)
V (Å ³)	1693.779(10)	1737.823(20)	1763.613(17)	1810.138(7)
R_{wp}	13.31%	12.94%	12.42%	14.20%
R_p	9.17%	9.31%	8.58%	10.11%
χ^2	1.309	1.240	1.181	1.491

Table S2 Rietveld refinement parameters of $Lu_3Al_xGa_{5-x}O_{12}:0.5\%Pr^{3+}$ (x= 0, 2, 3, 5) phosphors.

Decay time (s)	Intensity (mW m ⁻²)		
5	19.76		
10	14.00		
30	7.41		
60	4.62		
180	2.06		
300	1.31		
600	0.65		
900	0.44		

Table S3 UVB persistent luminescence power intensities measured by Newport power meter.

Table S4 Comparison of the reported UV persistent phosphors.

Material	Maximum emission	Irradiance	Ref. (in text)
$Ca_2Al_2SiO_7{:}Pr^{3+}$	268 nm	4.8 mW m ⁻² at 10 s	1
$Y_3Ga_5O_{12}{:}Bi^{3+}$	313 nm	5.7 mW m ⁻² at 10 s	2
LiYGeO4:Bi ³⁺	365 nm	11.83 mW m ⁻² at 10 s	3
Cs ₂ NaYF ₆ :Pr ³⁺	270 nm	14.9 mW m ⁻² at 30 s	4
Lu_2SiO_5 : Pr^{3+}	270 nm	6.98 mW m ⁻² at 15s	5
$Lu_{3}Al_{3}Ga_{2}O_{12}$: Pr^{3+} , Cr^{3+}	302 nm	14.00 mW m ⁻² at 10 s	This work

[1] X. Wang, Y. Chen, F. Liu and Z. Pan, Nat. Commun., 2020, 11, 2040.

[2] J. Liu, Y. Liang, S. Yan, D. Chen, S. Miao, W. Wang and J. Bi, J. Mater. Chem. C, 2021, 9, 9692-9701.

[3] J. Shi, X. Sun, S. Zheng, X. Fu, Y. Yang, J. Wang and H. Zhang, Adv. Opt. Mater., 2019, 7, 1900526.

[4] Y. Yang, Z. Li, J. Zhang, Y. Lu, S. Guo, Q. Zhao, X. Wang, Z. Yong, H. Li, J. Ma, Y. Kuroiwa, C. Moriyoshi, L. Hu, L. Zhang, L. Zheng and H. Sun, *Light Sci. Appl.*, 2018, 7, 88.

[5] S. Yan, Y. Liang, Y. Chen, J. Liu, D. Chen and Z. Pan, *Dalton Trans.*, 2021, 50, 8457-8466.