Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Electronic Supporting Information

Precursor-CompensationStrategyBoostsPhotoresponsePerformance of Air-stable, Self-powered Cs2SnI6Photodetectors

Junyi Huang, Chen Dong*, Yantao Mei, Xiayao Lu, Gentian Yue, Yueyue Gao, Rong

Liu, Weifeng Zhang, Furui Tan*

Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, PR China.

Corresponding authors.

E-mail address: *Chen Dong, phydongchen@163.com; *Furui Tan, frtan@henu.edu.cn

Typically, Cs_2SnI_6 films are prepared by using a stoichiometric SnI_4 : CsI ratio (1:2) in the precursor solution. However, due to the easy volatilization of SnI_4 , CsI precursor will be excessive in the film-forming process, especially for the films fabricated with stoichiometric precursor. **Fig. S1** shows the XRD patterns of the Cs_2SnI_6 films (without SnI_4 precursor compensation) prepared with SnI_4 : CsI stoichiometric (1:2) and non-stoichiometric (1:1) ratios. Obviously, stronger CsI impurity peaks are observed for the Cs_2SnI_6 film obtained with the SnI_4 : CsI ratio of 1:2 than that with ratio of 1:1, suggesting the non-stoichiometric precursor engineering will make it easier to obtain a pure-phase (CsI impurity free) Cs_2SnI_6 double perovskite through the developed PCT strategy.

Fig. S1 XRD patterns of the Cs_2SnI_6 films prepared with different SnI_4 : CsI stoichiometric ratios.

Fig. S2 Raman spectra of the PCT-Cs $_2$ SnI $_6$ film and control sample.

Fig. S3 Tauc plot of the PCT-Cs₂SnI₆ film and control sample.