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I. PBE functional convergence with high k-grid

We have shown convergence of the imaginary part of the dielectric function using PBE functional for MAPbI3, FAPbI3

and CsPbI3, respectively. We have used DFPT method in order to show high k-grid sampling. We have observed
that with increase in k-mesh, first peak does not change (shown by arrow) for all the systems (MAPbI3, FAPbI3 and
CsPbI3), unlike the case of mBSE calculations. In case of mBSE calculations, the first peak position has been slightly
changed with an increase in k-mesh (see Fig 2(d)-(f) in main manuscript). This observation reinforces that, for PBE
functional, convergence (in terms of bandgap) can be achieved at low k-grid sampling. However, for BSE calculations,
we need to go at high k-grid sampling. Notably, the optical features or shape of spectra require high k-grid sampling
in order to validate the results with experiment in case of both PBE and mBSE approach.

MAPbI3 FAPbI3 CsPbI3

Figure S1: Variation of the imaginary part of dielectric function calculated using PBE functional with k-mesh.

II. Convergence of occupied and unoccupied bands in BSE calculations

For BSE calculations, the real and imaginary parts of the dielectric function are carefully examined with re-
spect to a different number of occupied (NO) and unoccupied (NV) bands. The imaginary and real part of the
dielectric function for different NO and NV [viz. NO = 4, NV = 8; NO = 20, NV = 20; NO = 22, NV = 22 etc.] are
calculated for FAPbI3 (see Fig S2). Fig S2(a) shows a slight change in the imaginary part of the dielectric function
(only in the intensity of the peak), whereas it is clear from Fig S2(b) that there is significant change in the real part
of the dielectric function. Here, we have observed that the static value of the real part of dielectric constant increases
with an increase in NO, NV. The real and imaginary parts of the dielectric function are saturated at NO=NV=20. If
we increase NO, NV beyond 20, no change in dielectric function is observed. Therefore, for rest of the calculations,
we have set NO and NV at 20.
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Figure S2: Convergence of number of bands in BSE calculations.

III. Effect of SOC on band structure

The bandgap calculated for MAPbI3 from PBE and PBE+SOC are 1.54 eV and 0.49 eV, respectively. Here,
we have observed that inclusion of SOC significantly reduces the bandgap by almost 1 eV. On comparing the band
structure from PBE and PBE+SOC, we have discerned that, the valence and conduction band levels are significantly
affected by SOC. The drastic changes mostly originate in the Pb-derived conduction band levels along with slight
changes in the valence band levels.

Figure S3: MaPbI3 band structure, using PBE and PBE+SOC exchange correlation (εxc) functional

IV. Determination of GW bandgap for MAPbI3, FAPbI3 and CsPbI3
perovskites

We have determined the optical response of APbI3 perovskites by computing the imaginary part of dielectric
function (Im (ε)). Initially, we have started with basic GGA (PBE) functional for the optical spectra of the cubic
phase of MAPbI3 perovskite, without incorporating SOC (see Fig1(a) in main manuscript). Subsequently, we have
benchmarked the GW calculations with a comparative study of self-consistent GW (scGW) and single-shot GW (see
Fig. S12). We have computed the optical spectra using scGW for MAPbI3, and discern that scGW is four times
more expensive as compared to single-shot GW, even for the calculations without SOC for a unitcell. Hence, we have
performed all the following computations with single-shot GW. It is well known that single-shot GW calculation
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is very much dependent on its starting point. Hence, it is crucial to obtain a pertinent starting point for the GW
calculations. Therefore, from PBE calculation, we have obtained first peak at 1.55 eV, which is very close to the
reported values (1.57–1.69 eV) [1–4].

Here, in our case, this matching is just the outcome of error cancellation due to self interaction error and non
inclusion of SOC. Notably, this is not true for all the perovskites. We have shown in our recent work on FAPbBr3,
that the electron’s self interaction error and SOC counter each other by unequal amount, thereby resulting in
bandgap with PBE functional (1.72 eV) not in agreement with experimental value (2.23 eV) [5]. However, we have
tried to further improve the optical peak of MAPbI3, by performing GW@PBE calculations. This results in a large
discrepancy in optical peak (2.37 eV) with respect to the reported value (see Fig1(a) in main manuscript). To correct
it, we have explored BSE@GW calculation, which takes into account the e-h interactions. This leads to the reduction
in the bandgap. Although BSE has reduced the GW bandgap, the achieved gap (2.12 eV) via BSE@GW@PBE is
still far from the experimental value (see Fig1(a)). However, a sharp peak is observed for BSE calculations, which
signifies the excitonic effect.
It is important to include the SOC effect in the APbI3 perovskites, because of the presence of heavier elements
like Pb and I. The role of SOC can be easily observed from the comparative analysis of band structures computed
with and without SOC. The conduction band levels are significantly affected by SOC (Fig S3). Therefore, SOC
should not be omitted in the calculations, even though PBE calculations yield the correct bandgap for MAPbI3.
The inclusion of SOC in PBE calculation tends to reduce the bandgap significantly by almost 1 eV. Here, we have
observed a peak at 0.4 eV (see Fig 1b) in main manuscript). Then, we have performed GW@PBE+SOC calculations,
hoping an improvement in the peak or bandgap, as it has a tendency to overestimate the bandgap. Unfortunately,
GW@PBE+SOC calculation gives a peak value at 1.0 eV (see Fig1(b)). This value is in agreement with the previous
theoretical calculations based on GW [1, 6], however still deviates from the experimental value. Note that, the value
obtained from GW@PBE+SOC (1.0 eV) is still better, comparing the same with GW@PBE (2.37 eV). However, the
BSE@GW@PBE+SOC gives the peak value at 0.72 eV which does not correlate well with the experimental value.
Hence, we rationalize that, to perform single-shot GW on the top of PBE (with or without SOC) is not a good
choice. Therefore, a theoretical approach is needed, which would better reproduce the experimental bandgap and
peak position.

Hybrid functionals have emerged as an effective method, considering the agreement between theoretical calculations
and experiments, at an affordable increase in the computational cost [7]. In HSE06 calculations, the exact exchange
term from Hartree Fock (HF) is mixed with the semi-local εxc part of the DFT in a ratio (α). This ratio can be
further adjusted in order to reproduce the experimental bandgap of the material. We have started with the default

parameters of the HSE06 with a fraction of exact exchange of 25%, and screening parameter of 0.2 Å
−1

. The
peak position is obtained at 2.2 eV i.e far away from the experimental results. Hence, there is no use to perform
GW@HSE06 and BSE@GW, because the peak value will be in any case overestimated due to poor starting point (see
Fig 1(c) in main manuscript). Therefore, incorporation of SOC is important even for the hybrid functional HSE06.
Initially, we have used standard parameter (α = 25%) of HSE06 with SOC, the peak position is obtained at 0.95 eV.
Then, we have performed GW@HSE06+SOC with 25% α, that gives the first peak position at 1.37 eV. This peak
position is closer to the experimental value, whereas, the subsequent BSE peak position at 1.11 eV deviates from the
former (see Fig1(d)). Nevertheless, there is a possibility to further improve the peak position and the optical spectra.
In view of this, we have increased the exact exchange parameter α and finally, the convergence is reached at α = 50%
for MAPbI3. Hence, the optical peak or bandgap obtained using HSE06+SOC with α = 50% is 1.55 eV [8, 9], which
is in close agreement with the experiments (1.57 - 1.69 eV). Therefore, we conclude that HSE06+SOC (α=50%) is a
prominent choice as a starting point for the GW in our calculations. GW@HSE06+SOC with (α= 50%) gives rise
to a peak value at 1.67 eV (see Fig1(e))). On comparing Fig 1(a) and (e) in main manuscript, we can see that PBE
and HSE06+SOC (α = 50 %) tend to give the same value of the bandgap (1.55 eV), however, the first peak obtained
from GW and BSE in both the cases are totally different.

The bandgap or first peak of optical spectra obtained from PBE for FAPbI3 is 1.40 eV, which is very close
to the experimental value 1.46 eV. However, GW@PBE and BSE@GW give the optical peak at 2.20 eV and 1.87
eV, respectively (see Fig S4(a)). Similarly, on the inclusion of SOC, the peaks are redshifted and the values are 0.25
eV, 0.96 eV and 0.65 eV corresponding to PBE+SOC, GW@PBE+SOC and BSE@GW, respectively (see Fig S4(b)).
Likewise MAPbI3, PBE+SOC is not appropriate to act as a starting point for GW calculations. We have shown in
detail how all the peak positions (HSE06, GW@HSE06, BSE@GW) are shifted due to default value of α (25%) in
HSE06 with and without SOC (see Fig S4(c) and (d)). In order to achieve an accurate peak position, tuning of the
exact exchange parameter α by 53% works very well for FAPbI3 perovskite. HSE06+SOC gives a peak position at
1.39 eV, whereas GW performed on the top of HSE06+SOC with α=53% provides a peak position at 1.45 eV (see
Fig S4(e)). This value is in exact agreement with the experiments [10–12]. Therefore, this observation reinforces our
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approach to accurately determine the fundamental gap (GW bandgap). Hence, we have generalized our approach for
the HIOPs perovskite, now it will be interesting to discern its applicability for the inorganic perovskite.
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Figure S4: Imaginary part of dielectric function of FAPbI3 calculated using single-shot GW and BSE, where several
εxc functional are used as a starting point (i): (a) PBE (b) PBE+SOC (c) HSE06 (α= 25%) (d) HSE06+SOC (α=
25%) (e) HSE06+SOC (α= 53%).

For CsPbI3 perovskite, we have obtained bandgap or optical peak at 1.50 eV using PBE functional. Unlike, HIOPs
perovskites, there is no accidental matching of the PBE bandgap with the experimental value 1.73 eV [13, 14].
However, the bandgap can be overestimated using GW@PBE, but this results in peak value obtained at 2.07 eV,
thus, not in agreement with the experiment (see Fig S5(a)). The BSE peak is obtained at 1.84 eV. Inclusion of SOC
shifts the peak position at low energy value (see Fig S5(b)). The role of hybrid functional with and without SOC to
be used as a starting point for the GW calculation can be seen explicitly in Fig S5(c) and (d), with default α= 25%.
GW@HSE06 (α=25%) and GW@HSE06+SOC (α=25%) give peak position at 2.43 eV and 1.37 eV, respectively.
These values are no longer close to the experimental data.
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Figure S5: Optical spectra of CsPbI3 calculated using single-shot GW and BSE, where several εxc functional are used
as a starting point (i): (a) PBE (b) PBE+SOC (c) HSE06 (α= 25%) (d) HSE06+SOC (α= 25%) (e) HSE06+SOC
(α= 53%).

Therefore, we have tuned α= 53% in HSE06+SOC calculations, that results in peak position at 1.69 eV. Then
performing GW@HSE06+SOC (α=53%) leads to optical peak at 1.73 eV, which results in excellent agreement
with the experiment (see Fig S5(e)) [13, 14]. Hence, we can conclude that, this method is sophisticated enough to
predict accurate GW bandgap as well as correct optical peak position for all types of perovskites without going for
computationally demanding high k-grid sampling.

V. Comparison between model-BSE (mBSE) and BSE approach

We have used a local model dielectric function ε−1
∞ in the BSE calculations, in order to converge the exciton binding

energies on dense k-point grids. This model allows us to calculate the experimental features of the optical spectra. The
parameter ε−1

∞ comes from DFPT calculations on a shifted high k-point grid (8×8×8 or 11×11×11). The screening
length parameter (λ) are fitted to match the diagonal (G = G′ ) part of dielectric function from the GW calculations
on the shifted 4 × 4 × 4 k-point grid. This approximation works very well, particularly, in the low energy part as
shown in Fig S6 and S7. Here, we have shown for MAPbI3, FAPbI3 perovskite. The imaginary part of the dielectric
function calculated with BSE@GW@PBE, including SOC, matches with the one, which is calculated with the model
BSE (mBSE) method, where input is PBE+SOC. Therefore, the excitonic features (i.e first peak) information are
always retained by mBSE approach. Note that both the calculations are carried out using a 4 × 4 × 4 k-point grid
with a same starting point. It is worth to note that mBSE approach can predict the optical spectra for a dense high
k-grid along with a very affordable computational cost. However, convergence of BSE calculations with such high
k-grid is next to impossible, because of its huge computational cost.
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Figure S6: Imaginary part of dielectric function calculated using BSE and mBSE approach for MAPbI3 perovskite.
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Figure S7: Imaginary part of dielectric function calculated using BSE and mBSE approach for FAPbI3 perovskite.

VI. Projected density of states (PDOS) of MAPbI3, FAPbI3 and CsPbI3

From Fig S8, we observe that valence band is primarily composed of I atom, whereas conduction band is mainly
contributed by Pb atom for MAPbI3, FAPbI3 and CsPbI3, respectively. Note that, the contribution of the organic
cation (MA, FA) and the inorganic cation (Cs) is in deep inside the valence and conduction band. In short, cations
do not play any role at the valence band and conduction band edges.
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Figure S8: PDOS shows contribution of each atom.

VII. Previous reports on GW gaps, GW effective mass, BSE Im(ε) and
the exciton binding energy

TABLE I: Previous reports on GW bandgap, GW effective mass and the exciton binding energy (EB) of APbI3

perovskites.

MAPbI3

Previous work This work Expt.

Bandgap (eV) GW@PBE+SOC 1.16/1.28 [1] 1.16 1.57–1.69 [1–4]

Bandgap (eV) GW@HSE06+SOC 1.33 [15] 1.37 1.69 [1–4]

Bandgap (eV) GW@HSE06+SOC (50%) – 1.67 1.69 [1–4]

Effective mass m∗using GW 0.112 m0 [16] 0.107 m0 0.104±0.003 m0 [17, 18]

EB (meV) 19[19], 45[20] 16.13 16 [18], 12±4 [21]

Bandgap (eV) 1.48 [20] 1.45 1.45[10], 1.48 [13], 1.43 [12]

FAPbI3 Effective mass m∗using GW 0.101 m0 [22] 0.102 m0 0.095±10% m0 [18]

EB (meV) 17[19], 35[20] 13.30 10-14 [18]

Bandgap (eV) 1.65 [23] 1.73 1.72 [21]

CsPbI3 Effective mass m∗using GW 0.07 m0, 0.18 m0, 0.101 m0 [22–24] 0.108 0.114±0.01 m0 [18]

EB (meV) 24[19] 25.40, 14.60 15±1[18]

VIII. Variation of the exciton peak with respect to the K-point

The broadening parameter i.e SIGMA = 0.01 is same for all the APbI3 perovskites (A = MA, FA and Cs).
Still the features of excitonic peaks in Fig 5 (main manuscript) are different in all the three cases due to the
excitonic effects. Yes, we agree with the reviewer’s point that the width of the peak depends on the sampling of
the Brillouin’s zone (k-points). We have presented the comparison with different k-mesh viz. 4×4×4, 6×6×6 and
8×8×8 (see Fig S9). However, the trend for broadening remained same in every case , i.e. CsPbI3 has broadened
peak in comparison to that of MAPbI3 and FAPbI3, irrespective of the k-mesh size. It is well known that the width
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determines the energy and the inverse life time of the excitons. The sharper the peak, longer the quasi particle lives
and vice-versa. Therefore, qualitatively we can say that CsPbI3 has the lowest exciton lifetime.

MAPbI3 FAPbI3 CsPbI3

Energy (eV)

Im
 ( 

 ) ε
4x4x4

6x6x6

8x8x8

Figure S9: Qualitative analysis of exciton lifetime using mBSE exciton peak correponding to the K-point 4×4×4,
6×6×6 and 8×8×8

IX. Convergence criterion for the NBANDS and ENCUT
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Figure S10: Convergence of the bandgap (eV) with respect to number of bands (NBANDS) and cutoff energy (EN-
CUT).

We have shown the convergence of the quasiparticle energies (and therefore of the quasiparticle bandgap) with
respect to a set of number of bands (NBANDS), and the energy cutoff for the plane wave expansion (ENCUT).
We have computed Eg as a function of NBANDS for fixed values of ENCUT. This scheme can leads to sufficiently
well-converged results.

For our GW calculations, we have considered 1000 NBANDS and 400 ENCUT. Following this, the difference in
bandgap using 2000 and 1000 NBANDS is around 0.02-0.04 eV. The difference is quite small, therefore we have
considered 1000 bands in our calculations. However, for the convergence of energy cutoff i.e., ENCUT values, the
difference between the bandgap using ENCUT 400, 500 eV is negligible. Note that, we have also checked the same
for ENCUT= 600 eV and we do not observe any change in the value.

X. Effect of semicore electrons in the bandgap

The PAW pseodopotentials used in our calculations are Pb (5d10 6s2 6p2 i.e. 14 valence electrons) and I (5s2

5p5 i.e. 7 valence electrons). However, we have also checked the influence of Pb (6s2 6p2 i.e. 4 valence electrons) in
bandgap in our calculations.

For example, For CsPbI3 with Pb (14 and 4 valence electrons) and I (7 valence electrons):
Bandgap (5d10 6s2 6p2 i.e. 14 valence electrons) (PBE)= 1.49 eV
Bandgap (6s2 6p2 i.e. 4 valence electrons) (PBE)= 1.50 eV
Bandgap ( 5d10 6s2 6p2 i.e. 14 valence electrons) (GW @PBE)= 2.04 eV
Bandgap (6s2 6p2 i.e. 4 valence electrons) (GW @PBE)= 2.17 eV

Similarly for FAPbI3 with Pb (14 and 4 valence electrons) and I (7 valence electrons):
Bandgap (5d10 6s2 6p2 i.e. 14 valence electrons) (PBE)= 1.31 eV eV
Bandgap (6s2 6p2 i.e. 4 valence electrons) (PBE)= 1.31 eV
Bandgap (5d10 6s2 6p2 i.e. 14 valence electrons) (GW @PBE)= 1.93 eV
Bandgap (6s2 6p2 i.e. 4 valence electrons) (GW @PBE)= 2.04 eV

We observe that at PBE level, different pseudopotentials yield the same value of the bandgap. Notably, in
order to check the influence of pseudopotentials, these calculations are done for ENCUT = 400 eV and NBANDS =
192. However, the convergence parameter required for the calculations is given in aforementioned section.

XI. Tuning of exact-exchange α parameter in hybrid calculations,
followed by single-shot GW
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Figure S11: Variation in GW first peak in CsPbI3 due to tuning of α parameter at starting HSE06+SOC point.

Note that, the GW and the BSE calculations will give the fundamental gap and the optical gap, respectively. In
Figure S5, we have shown the GW optical spectra for CsPbI3 perovskites. We obtain that the GW first peak shifts
with the change in α parameter at starting HSE06+SOC point. We discern that with an increase in α parameter,
the band gap also increases. The same procedure follows for MAPbI3 and FAPbI3 perovskites.

TABLE II: Variation of GW bandgap with respect to α.

α GW bandgap of CsPbI3

0.30 1.42

0.46 1.59

0.50 1.64

0.53 1.73

0.55 1.80

From Table III, we observe that the bandgap can be tuned with the variation in α parameter. For α = 0.53, we
have achieved the bandgap in agreement with the experimental values.

XII. Effective mass calculations for MAPbI3

We have calculated the effective masses for both the splitted bands along R → X and R → Γ directions and
take the average value of the effective masses.
For example: for MAPbI3:

Hole effective masses:
mh: -0.24 | band 44 | [0.50, 0.50, 0.50] → [0.00, 0.50, 0.00]
mh: -0.20 | band 44 | [0.50, 0.50, 0.50] → [0.00, 0.00, 0.00]

Electron effective masses:
me: 0.257 | band 45 | [0.50, 0.50, 0.50] → [0.00, 0.50, 0.00]
me: 0.180 | band 45 | [0.50, 0.50, 0.50] → [0.00, 0.00, 0.00]
me: 0.236 | band 46 | [0.50, 0.50, 0.50] → [0.00, 0.50, 0.00]
me: 0.167 | band 46 | [0.50, 0.50, 0.50] → [0.00, 0.00, 0.00]
Hence, the average effective mass of electron (me) and hole (mh) is 0.21 m0 and 0.22 m0, respectively.
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XIII. Comparison between self-consistent GW (scGW) and single-
shot GW for MAPbI3

Self consistent GW (scGW) may be a viable choice, because for scGW, we don’t need to test for the starting
point, on the other hand single-shot GW is very much dependent on the starting point. Despite of that, in single-shot
GW, the self-energy is calculated only once, therefore, it is computationally less expensive. However, self-consistent
GW (scGW) is very much computationally expensive methods. We have computed optical spectra using scGW
for MAPbI3, and observe that scGW is four times more expensive as compared to single-shot GW, even for the
calculations without SOC. The first peak observed for the single-shot GW and the scGW is 2.37 eV and 2.68 eV,
respectively. For MAPbI3, SOC tends to reduce the bandgap significantly by 1−1.2 eV. Hence, we can say that
with the inclusion of SOC, scGW will give results very accurate as compared to single-shot GW. Nevertheless, to
perform scGW is computationally very expensive method (at least four times that we have benchmarked) even for
a small unitcell. That is why, in order to have a reliable results from single-shot GW, we should be very careful for
the starting point. In view of this, we have tested our starting point very carefully via PBE, PBE+SOC, HSE06,
HSE06+SOC (25%) and HSE06+SOC (50%). In single-shot GW, if we know the starting point accurately, then to
perform single-shot GW is comparatively less expensive than scGW.

0 2 4 6 8 100

2

4

6

8 G0W0
scGW

Energy (eV)

2.37 eV
2.68 eV

Figure S12: Optical spectra of MAPbI3 using single-shot GW and self-consistent GW on the top of PBE without
SOC.

XIV. Strength of electron-phonon coupling

The change in bond length, specific free volume, and atomic fluctuations would give a qualitative idea of
coupling strength. Hence, on analyzing these parameters, we discern the strength of electron-phonon coupling in
APbI3 perovskites. For this purpose, we construct a 2×2×2 supercell using the optimized cubic phase unitcells of
MAPbI3, FAPbI3 and CsPbI3, containing 96 atoms in MAPbI3 and FAPbI3, and 40 atoms in the CsPbI3, respectively.
We have performed 10 ps long MD simulation run at 300 K with NVT ensemble (Nose-Hoover thermostat). The
time step is taken as 1 fs. We have optimized the geometries of MAPbI3, FAPbI3, and CsPbI3 at 0 K and and
subsequently, the snapshots of the corresponding structures are taken from the MD simulation at 300 K. We have
calculated the average bond length of Pb–I in the MAPbI3, FAPbI3 and CsPbI3 systems at 0 K i.e., 3.21 Å, 3.24 Å,
and 3.20 Å, respectively (see Table III).
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TABLE III: Pb–I bond length (Å) of APbI3 perovskites at 0 K and 300 K.

Temperature
(K)

MAPbI3 FAPbI3 CsPbI3

0 3.21 3.24 3.20

300 3.31 3.32 3.35

We observed that, at room temperature (300 K), the bond length increases to 3.31 Å, 3.32 Å, and 3.35 Å for
MAPbI3, FAPbI3 and CsPbI3, respectively. The increase in the Pb–I bond length in CsPbI3 is larger than that of
MAPbI3 and FAPbI3 (on reaching 300 K). This is because the larger A-site organic cations in FAPbI3, suppress the
deformation of the inorganic sublattice made of Pb and I. The observed change in the Pb–I bond length manifests
the strong electron vibrational coupling in the CsPbI3, followed by MAPbI3 and FAPbI3.
The aforementioned point can be further explained by the lattice free volume, which is defined as the difference
between the unitcell volume and the constituent ions’ volume. In general, a larger unoccupied volume yields more
space for atomic motions, that tend to enhance the electron-phonon coupling. The volume of the optimized unitcell
of MAPbI3, FAPbI3 and CsPbI3 is calculated to be 260.92 Å3, 262.56 Å3 and 259.69 Å3, respectively. Shannon ionic
radii of MA+, FA+, Cs+, Pb2+, and I− are 2.17 Å, 2.53 Å, 1.88 Å, 1.19 Åand 2.20Å, respectively. Each APbI3

unitcell contains one A (MA+, FA+, Cs+), one Pb2+, and three I−. Adding the spheres’ volume in the unitcell yields
the total ion volume of 183.57 Å3, 208.59 Å3 and 168.61 Å3 for MAPbI3, FAPbI3, and CsPbI3, respectively. The
ratio between the unoccupied volume and the total volume is known as the specific free volume, which are obtained
as 29.64%, 20.55% and 35.07%, for the MAPbI3, FAPbI3 and CsPbI3, respectively (see Table IV). The smaller value
of specific free volume infers the smaller amplitude of ion motions and hence, indicating the weaker electron-phonon
coupling. Thus, it is anticipated that the electron-phonon coupling follows the sequence as CsPbI3 > MAPbI3 >
FAPbI3.

TABLE IV: Specific free volume for APbI3 perovskites.

Specific free volume MAPbI3 FAPbI3 CsPbI3

in (%) 29.64 20.55 35.07

To corroborate our aforementioned results, we calculate the canonically averaged root mean square deviation of the
position of each atom i, denoted by σi.

σi =

√〈
(~ri − ~r′i)

2
〉

(1)

where ~ri and ~r′i represent the location of atom i at time t along the 10 ps long MD trajectory at 300 K and initial
optimized structure at 0 K. A smaller value of averaged root mean square deviation (σi) indicates the weaker electron-
phonon coupling and the smaller atomic vibration fluctuation in the system. We have calculated the averaged root
mean square deviation (σi) only for the positions of Pb and I atoms in APbI3 perovskites, because the highest occupied
molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) primarily consist of Pb and I orbitals
(Figure S8). From Table V, the σi has the following trend for the positions of I and Pb atoms: CsPbI3 > MAPbI3 >
FAPbI3.

TABLE V: Averaged root mean square deviation in APbI3 perovskites.

σi MAPbI3 FAPbI3 CsPbI3

Pb 0.295 0.135 0.306

I 0.516 0.347 0.679

The trend observed in case of atomic fluctuations reflect the same for electron-phonon couplings as well. Thus, the
detailed analysis of bond length, specific free volume, and atomic fluctuation are in agreement with each other and
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corroborate the fact that electron-phonon coupling is strongest in the CsPbI3, with significant reduction in MAPbI3

and FAPbI3. Therefore, the effect of electron-phonon coupling tends to broaden the peak of CsPbI3 significantly as
compared to MAPbI3 and FAPbI3. Therefore, it validates the conclusion of Fig 7 in main manuscript, that exciton
lifetime will follow the sequence as FAPbI3 > MAPbI3 > CsPbI3.

XV. DFT-1
2 method for determining bandgap in APbI3 perovskites

We have performed our calculation with DFT- 1
2 method. The DFT- 1

2 method attempts to correct the DFT
self-interaction error by defining an atomic self-energy potential that cancels the electron-hole self-interaction energy.
The DFT- 1

2 method stems from Slater’s proposal of an approximation for the excitation energy, a transition state
method, to reduce the band gap inaccuracy by introducing a half-electron/half-hole occupation. Ferreira et al. [25]
extended the method to modern DFT and particularly to solid-state systems, by assuming that the excited electron
in the conduction band of a semiconductor usually occupies Bloch-like states with nearly vanishing self-energy, while
the hole left in the valence band is localized with a finite self-energy. The self-energy of the hole was corrected by
modifying the corresponding pseudopotentials of the atoms (in real space) by removing half an electron from the
orbitals that contribute to the top of the valence band. Therefore, this method is capable enough to predict bandgap
close to experiment with the same computational cost as standard DFT, however, this method imposes correction
only to the valence band. Hence, conduction band level information is not predicted with the same accuracy as of
valence band. Notably for DFT- 1

2 , we have imposed correction only on Pb and I atom pseudopotentials, because rest
of the atoms will not contribute at the band edges. From the computational perspective, this method is really very
useful to predict at least the correct valence band edge position. Still, we beleive that the starting point approach
which we have used in our calculation is more effective to determine the valence band as well as conduction band
edge positions along with the bandgap.

TABLE VI: Bandgap computed using DFT- 1
2 +SOC method.

APbX3 Bandgap (eV) (DFT- 1
2
+SOC) Experimental bandgap (eV)

MAPbI3 1.45 1.50 - 1.69

FAPbI3 1.36 1.40 - 1.48

CsPbI3 1.50 1.72

XVI. PBE+U method for determining bandgap in APbI3 perovskites

We have performed the PBE+U calculation as a starting point for GW and BSE. We have chosen Hubbard
parameter U = 2.3 eV, 2.3 eV and 6 eV for MAPbI3, FAPbI3 and CsPbI3, respectively.
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Figure S13: Optical spectra computed with PBE+U as a starting point for MAPbI3, FAPbI3 and CsPbI3, respectively.

We obtain the following GW bandgap:
GW@PBE+U method can predict the bandgap accurately by tuning the Hubbard U parameter. In GGA+U

TABLE VII: GW bandgap computed using PBE+U method (including SOC).

APbX3 Bandgap (eV) (GW@PBE+U)

MAPbI3 1.50

FAPbI3 1.40

CsPbI3 1.83

method, still we are not able to define the correct band edge positions (VBM and CBm), that may impact the
formation energy of charged system (see details in our previous work [5, 8], where we have shown how the valence
band edge position influences the thermodynamic stability.
However, in the literature, this work [26], has shown the effect of starting point and self-consistency within GW on
the band edge positions of semiconductors and insulators. They have found that, compared to calculations based on
a semi-local starting point, the use of a hybrid-functional starting point shows a larger quasiparticle correction for
both band edge states. That’s why we have used the approach that can predict the bandgap as well as band edge
position correctly.

XVII. Fat band structure of APbI3 perovskites

We have computed fat band structure for APbI3 perovskite. The fat band structure helps to compute the
exciton radius from the model BSE calculations.
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TABLE VIII: Comparison of exciton radius from Wannier-Mott approach and model-BSE approach.

Exciton radius of APbX3 Wannier-mott (nm) model-BSE (nm)

MAPbI3 4.69 4.9

FAPbI3 5.30 6.0

CsPbI3 3.72 3.9

Γ Γ ΓR R R

MAPbI3 FAPbI3 CsPbI3

En
er

gy
 (e

V)

Figure S14: Fat band picture of excitons in APbX3 perovskites. The black and red dots correspond to hole and
electron eigenvalues along the high symmetry path Γ→ R. The radii of the circles represent the contribution of the
e-h pair at the R-point to the first exciton wave function.

XVIII. Exciton lifetime using model BSE approach and its comparison with Wannier
Mott approach

We have used the approach presented by Spataru et al. [27] and the same approach has been used in [28].
By using the same approach, we have calculated radiative exciton lifetime using formula:

γ(0) =
2πe2Ω(0)2

~c2
µ2
Vcell

Vcell
(2)

µ2
Vcell

Vcell
is the squared exciton transition dipole matrix element per unit cell and Ω(0) is the excitation energy of a zero-

momentum exciton, respectively. Theses parameters are calculated from the BSE calculations:
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Figure S15: Oscillator strength for MAPbI3, FAPbI3, and CsPbI3, respectively.

TABLE IX: Table VI. Exciton lifetime computed using mBSE approach

APbX3 Ω(0) (eV)
µ2
Vcell
Vcell

(a.u.) lifetime (ps)

MAPbI3 0.94 127.8 1.91

FAPbI3 0.86 127.4 2.29

CsPbI3 0.99 117 1.87

TABLE X: Comparison between exciton lifetime computed using Wannier Mott and mBSE approach

APbX3 Wannier-mott (ps) model-BSE (ps)

MAPbI3 13.77 1.91

FAPbI3 19.85 2.29

CsPbI3 12.51 1.87

From Table X, both the approaches result in exciton lifetime in order of ps range. Note that by taking momentum
dependence and dark states into account, an effective radiative lifetime τeff , can be increased to an order of ns.

XIX. Direct-indirect nature of the bandgap (Rashba splitting)
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Figure S16: The Rashba-Dresselhaus splitting of the CBM in the R → X and R → Γ directions for (a) MAPbI3

(b) FAPbI3 and (c) CsPbI3. (a) and (b) show inset of zoomed section of the split conduction bands. The spin split
valence bands are shown in green and blue solid lines. The conduction bands are denoted by black and red solid lines.
The other bands are shown by dashed black lines.

The splitting of bands due to SOC and lack of inversion symmetry result in the Rashba splitting of bands. Note that,
for APbX3 perovskites, the Rashba effect is a bit controversial topic because this system intrinsically does not have
broken inversion symmetry. There are some dipole fluctuations and disorders which may give some Rashba splitting.
The Rashba effect is dominant near the CBm, because of the strong influence of SOC towards heavier atom Pb (main
contributor at the CBm). The vertical energy difference (ER) between slightly shifted CBm and the conduction
band energy at R, leads to indirect nature of the bandgap (see inset of Fig S16(a)). The values of ER for MAPbI3

along R → X and R → Γ directions are 22 meV in agreement with literature [29] and 12.8 meV, respectively.
However, for FAPbI3, the calculated values are 0.59 meV (R → X) and 2 meV (R → Γ), respectively. Notably, due
to slight change from direct to indirect (in meV), the absorption spectrum is hardly affected by the presence of an
indirect gap. The direct-indirect nature of the bandgap allows photogenerated charge carriers to relax into indirect
band, whereas direct bandgap allows strong absorption of light. The indirect bandgap may reduce the possibility of
radiative recombination of e-h, on the contrary, which is active in direct bandgap semiconductors.
The strength of the Rashba effect can be obtained by the parameter a = 2ER/k, where ER is the amplitude of the
band splitting in a R → X and R → Γ directions [30] (see the inset of Fig S16(a)). For MAPbI3, the estimated a
values in the R → X and R → Γ directions are 1.96 eVÅ and 1.01 eVÅ, respectively. For FAPbI3, a values in the R
→ X and R → Γ directions are 0.17 eVÅ and 0.77 eVÅ, respectively. Hence, MAPbI3 and FAPbI3, have significant
Rashba splitting, which is completely absent in cubic CsPbI3 (see Fig S16). The interplay of a low recombination
rate (due to indirect gap) and strong absorption (direct gap) indicate the high solar efficiencies of HIOPs.

XX. Effective dielectric constant

The Eq. 5 as mentioned in the main manuscript is:

ε−1
eff = 1 +

2

π

∫ ∞
0

Im(ε−1(ω))

ω + EB
(3)

Here, ε−1
eff is the wave vector dependent effective inverse dielectric function and ε(ω) is screening due to phonons.

The term −Im(ε−1(ω)) describes the energy loss function that is calculated from the real and imaginary part of the
dielectric function. This equation gives εeff as a function of exciton binding energy (EB) i.e εeff(EB).

The Bethe-Salpeter Equation (BSE) for excitons with zero centre of mass momentum |S〉 =
∑
v′c′k′ A

S
vck|vck〉:(

EQPck − E
QP
vk

)
ASvck +

∑
v′c′k′

〈
vck

∣∣Keh
(
ΩS
)∣∣ v′c′k′〉ASv′c′k′ = ΩSASvck (4)
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where ASvck and ΩS are the quasielectron-quasihole (e-h) coupling coefficients and exciton energy, respectively. The e-h
interaction kernel comprises the “direct” and “exchange” terms, i.e Keh

(
ΩS
)

= −Keh
(
ΩS
)

+Kexch . The attractive

direct term dominates by far and describes the e-h interaction via an effective screened Coulomb interaction W̃ ≡ ε̃−1v.
The expression for the effective dielectric function ε̃−1 is quite complex as it reflects the fact that an electron excited
into a conduction band probes the density response of the system with a hole in the valence bands.
The effective dielectric function incorporates dynamical effects and can be written by neglecting quasiparticle and
exciton lifetime effects due to electron-electron interactions:

ε̃−1
GG′

cv,k+q ;c′v′,k

(
q; ΩS

)
= δGG′ − 1

πP
∫∞

0
dωImε−1

GG′(q, ω)

×
{

1

ΩS−ω−(EQP
ck+q−EQP

v′k)
+ 1

ΩS−ω−(EQP

c′k−EQP
vk+q)

}
(5)

Using the Kramers-Kronig relations obeyed by ε−1, one can write

ε̃−1
GGcv,k+q;c′v′,k

(
q; ΩS

)
= ε−1

GG′(q, 0)− 1

π
P

∫ ∞
0

dω Im ε−1
GG′(q, ω)

×

 2

ω
+

1

ΩS − ω −
(
EQP
ck+q − EQP

v′k

) +
1

ΩS − ω −
(
EQP
c′k − EQP

vk+q

)


(6)

The static approximation is obtained by setting EQPck − E
QP
v′k+q ≈ EQPc′k+q − E

QP
vk ≈ ΩS . First order corrections in

dynamical effects can be obtained by considering the case of a bound exciton with most of the contributing e-h pairs

localized near the onset of the e-h continuum. A better approximation is to assume EQPck −E
QP
v′k+q ≈ E

QP
c′k+q−E

QP
vk ≈

EcontS . Then Eq. 3 reduces to:

ε̃−1
GGcv,k+q;c′v′,k

(
q; ΩS

)
≈ε−1

GG′(q, 0)− 2

π

×
∫ ∞

0

dωImε−1
GG′(q, ω)

{
1

ω
− 1

ω + EB

} (7)

The detailed analysis of the above equations can be found in the following references [31, 32].
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