Electronic Supplementary Information

Enhancing Efficiency and Ambient Stability of Perovskite Solar Cells via Multifunctional Trap Passivation Molecule[†]

Maimur Hossain,^a Rahul Narasimhan Arunagirinathan,^b Rabindranath Garai,^a Ritesh Kant Gupta,^b Parameswar Krishnan Iver^{a,b*}

^aDepartment of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India

^bCentre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India

Corresponding Author: E-mail: pki@iitg.ac.in; Fax: +91 361 258 2349

Materials

FTO glass substrates (13 Ω sq⁻¹), PbI₂ (99.8%), all anhydrous solvent e.g. DMF, DMSO, isopropanol (IPA) Toluene, Chlorobenzene, were purchased from Sigma-Aldrich. Methylammonium iodide (MAI) was obtained from Dyesol. Nickel nitrate hexahydrate (Ni(NO₃)₂·6H₂O) and 5-fluoropyrimidine-2,4(1H,3H)-dione was obtained from TCI. All other chemicals were utilized as received.

NiO_x Film Preparation

 NiO_x solution was prepared by dissolving Nickel nitrate hexahydrate and Ethylenediamine (in 1:1 molar ratio) in Ethylene Glycol (1 ml). Then the NiO_x layer was coated as hole transporting layer (HTL) on the cleaned FTO. The cleaning process of FTOs was started with detergent and followed by deionized (DI) water, acetone, and IPA for 15 min for each solvent, then dried and treated with UV-ozone for half an hour. NiO_x precursor solution was spin coated onto the FTO substrates at 3500 rpm for 45 sec. Afterwards, the substrates were annealed at 300 °C for 60 min under ambient condition.

Device Fabrication

The MAPbI₃ precursor solution was prepared by mixing 209 mg of MAI, 581 mg of PbI₂ in a solvent mixture of γ -Butyrolactone and DMSO (7:3, v/v) in a glovebox. The solution was heated for 5-6 hours and filtered with the 0.45 µm filter before spin coating. For the passivated device varied concentrations (1.5 mg/ml to 4.5 mg/ml) of FPD were added to the precursor solution. The filtered solution was spin coated on the NiO_x coated FTO in a two-step spin coating process i.e. 750 rpm for 20 sec and 4000 rpm for 60 sec. In the second step, 150 µl anhydrous Toluene was dripped dropwise after 20 sec as anti-solvent and after that the substrates were annealed at 80° C for 10 min on a hotplate. Then, for both passivated and pristine devices, 12 mg/ml PC₆₁BM solution was coated at 1200 rpm as electron transporting layer (ETL) and again annealed at 80° C for 5 min on a hotplate. After that a thin layer of Rhodamine 101 inner salt was spin coated at 4000 rpm from a solution of 0.5 mg/ml in IPA. Lastly, silver was thermally deposited by using a shadow mask to obtain the devices with active area of 0.12 cm².¹

Device Characterization

The XRD patterns of the perovskite films were studied using a Rigaku Micromax-007HF diffractometer equipped with Cu K α 1 irradiation ($\lambda = 1.54184$ Å). The perovskite films were analyzed by UV-vis absorption spectroscopy (Perkin Elmer Lamda-35) and FTIR spectroscopy (LabRam HR) in ATR mode. The film morphology of the samples was investigated by scanning electron microscopy (FESEM, JEOL JSM-7610F). The current density–voltage (*J–V*) characteristic curves were recorded using a Keithley 2400 source meter under inert atmosphere by illuminating the device with a solar simulator (AM 1.5G, 100 mW cm⁻², Oriel Sol 3A solar simulator, Newport). The incident external quantum efficiency (EQE) was obtained by using an Oriel IQE-200 instrument under ambient condition. Electrochemical measurements were analyzed using a CH Instruments 760D.

Fig. S1 Energy band diagram of constituent layers in PVSC.

Table S1. Device parameters for hysteresis study for pristine and FDP modified device.

Device	J _{SC} , mA/cm ²	$V_{\rm OC}, {\rm V}$	FF, %	PCE, %	HI, %
Pristine_FS	21.32	1.006	70.4	15.10	9.07
Pristine_RS	21.03	1.001	65.2	13.73	
FPD_FS	23.97	1.086	77.7	20.22	1.38
FPD_RS	24.01	1.083	76.7	19.94	

Fig. S2 Nyquist plots obtained from impedance spectroscopy conducted at varied bias (0.65V - 0.90 V) for a) pristine b) FPD passivated PVSCs.

Fig. S3 Dark J–V characteristics of pristine and FPD modified PVSCs.

Fig. S4 Contact angle of a) pristine and b) FPD passivated films.

Table S	S2. C	omparative	list of	similar	research	articles	highlig	hting t	the PVS	SC per	rformance a	and sta	bility.
								· · · ·					~

No.	Article Source	Architecture	Passivation Additives	Pristi ne PCE, %	Cham pion Cell, %	Ambient Stability (PCE Retention)
1	J. Mater. Chem. A,	FTO/SnO ₂ /	Thiophene based	16.91	20.61	90% after,
	2021 , 9, 4138–4149	FAPBI ₃ /Spiro-	additives			60 days
		OMeTAD/MoO ₃ /Au				
2	Adv. Energy Mater.	FTO/NiOx/	Fluorinated Perylene	15.37	18.28	NA
	2019 , 9, 1900198	MAPBI ₃ /PC ₆₁ BM/B	Diimide (F-PDI)			
		CP/Ag				
3	Adv. Sustain. Syst.	FTO/NiOx/	Chelidamic acid (CA)	13.60	19.06	80% after,
	2020 , 2000078	MAPBI ₃ /PC ₆₁ BM/Rh				1000 h
		odamine 101/Ag				
4	ACS Appl. Energy	FTO/PEDOT:PSS/	Oxalic Acid	14.06	17.12	NA
	Mater. 2020, 3,	MAPBI ₃ /PC ₆₁ BM/Rh				
	2432-2439	odamine 101/Ag				

5	ACS Appl. Energy	FTO/PEDOT:PSS/	2-phenylethylazanium	14.61	17.33	85% after,
	Mater. 2021, 4,	FA _{0.8} MA _{0.15} Cs _{0.05} Pb _{0.}	iodide			33 h
	1731–1742	5Sn0.5I3/C60/BCP/Ag				
6	Adv. Funct. Mater.	FTO/SnO ₂ /FA _{0.8} MA ₀	indacenodithieno[3,2-b]	18.8	21.2	80% after,
	2020 , 30, 2002861.	.14Cs0.05PbI2.55Br0.45/S	thiophene (IDTT)			2000 h
		piro-OMeTAD /Au				
7	ACS Sustain. Chem.	ITO/PTAA/MAPbI ₃ /	Perylene Diimide based	17.3	20.3	75% after,
	Eng. 2020 , 8,	PCBM/BPhen/Al	small molecule			50 h
	8848-8856					
8	Sol. RRL 2020 , 4,	ITO/PTAA/MAPBI ₃ /	Isatin-Cl	18.13	20.18	90% after,
	1900529	PCBM/A1				350 h
9	J. Phys. Chem. Lett.	FTO/PTAA/MAPBI ₃	Polyvinylcarbazole	17.4	18.7	NA
	2020 , 11,	/ PC ₆₁ BM/Al				
	6772-6778					
10	J. Energy Chem. 59,	FTO/SnO ₂ /	indacenodithieno[3,2-b]	18.32	20.18	95% after,
	2021 755–762756	MAPBI ₃ /Spiro-	thiophene (IDTT)			1200 h
		OMeTAD /Au				
11	ACS Appl. Mater.	FTO/TiO ₂ / MAPbI ₃	1-hexyl-3-	17.33	19.44	80% after,
	Interfaces 2021, 13,	NPs/CsFAMA	methylimidazolium			6000 h
	21194-21206	/Spiro-OMETAD				
12	J. Mater. Chem. A,	ITO/PTAA/MAPbI ₃ /	Amino acids	17.51	20.49	94.9% after,
	2021 , 9, 5857–5865	PC ₆₁ BM/BCP/Ag				30 days
13	Adv. Funct. Mater.	FTO/TIO ₂ /ZrO ₂ /MA	N,1-Fluoro	14.23	17.01	NA
	2021 , 31, 2010603	PBI ₃ /Carbon	formamidinium Iodide			
14	Adv. Funct. Mater.	FTO/PEDOT:PSS/	Phenylhydrazinium	15.33	18.18	83% after,
	2020 , 30, 2020778	MAPBI ₃ /PC61BM/R	iodide			20 days
		hodamine 101/Ag				
15	This article	FTO/NiOx/	5-fluoropyrimidine-	15.10	20.22	89% after,
		MAPBI ₃ /PC ₆₁ BM/R	2,4(1H,3H)-dione(FPD)			1000 h
		hodamine 101/Ag				

References S1. M. A. Afroz, N. Ghimire, K. M. Reza, B. Bahrami, R. S. Bobba, A. Gurung, A. H. Chowdhury, P. K. Iyer and Q. Qiao, *ACS Appl. Energy Mater.*, 2020, **3**, 2432-2439.