Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting information

The effects of the polarized light on the optical and self-oscillation behaviors of liquid crystal network polymers

R.Zibaie^{a,b}, M.S.Zakerhamidi^{a,b,c*}, S. Korram^{a,b}, A. Ranjkesh^d

a) Faculty of Physics, University of Tabriz, Tabriz, Iran

b) Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran *c)* Photonics Center of Excellence, University of Tabriz, Tabriz, Iran

d) Condensed Matter Department, J. Stefan Institute, Jamova 39, Ljubljana, Slovenia

* Corresponding Authors Mohammad sadegh Zakerhamidi Tel: number: +98-41-33393353 Fax: number: +98-41-33347050 E-mail: Zakerhamidi@tabrizu.ac.ir

Figure S1. FT-IR spectra before and after photo-polymerization of RM 82

a

b

Figure S2. AFM images analysis in,a) the planar orientate side (front) ,b) the homeotropic oriented side

Third order nonlinear absorption

In open-aperture z-scan the normalized transmission of a nonlinear media is a function of nonlinear absorption (β) and is given by:¹

$$T_{norm}(z) = \frac{Ln(1+q_0(z,t))}{q_0(z,t)}$$

Where,

$$q_0(z,t) = \beta I_0 L_{eff} / (1 + z^2 / z_0^2)$$
⁽²⁾

In eq 2, the diffraction length of the beam, the effective length of sample and the intensity of the laser beam at the focus point symbolized by Z_o , L_{eff} and I_o , respectively. L_{eff} is the effective thickness of the sample and is obtained from the following equation: ²

$$L_{eff} = \frac{1 - e^{-\alpha L}}{\alpha} \tag{3}$$

$$\alpha = \frac{1}{t}Ln\frac{1}{T} \tag{4}$$

Where, *t* is the sample thickness, α is the linear absorption and *L* is the thickness obtained from linear absorption spectra and Bear-Lambert law.

Table S1. Linear absorption and nonlinear absorption coefficients in LCP	Table	S1. Line	ar absorptio	on and no	nlinear a	absorption	coefficients	in 1	LCN
---	-------	----------	--------------	-----------	-----------	------------	--------------	------	-----

Polarized light(405 nm)160 mWcm ⁻²	α (1/cm)	β (cm/W)	$L_{\rm eff(cm)}$
45° to the planer side (E45°)	69.09	0.070	0.0018
Parallel to the planer side $(E \parallel x)$	97.8775	0.062	0.0011
Perpendicular to the planer side $(E \perp x)$	86.36	0.081	0.0008

References

- E. W. Van Stryland ,M. Sheik-Bahae, Z-scan Measurements of Optical Nonlinearities, in: M. G. Kuzyk , C. W.Dirk (Eds.), Characterization Techniques and Tabulations for Organic Nonlinear Materials, Marcel Dekker, Inc. New York, 1998, 655-692.
- 2 M. Sheik-Bahae, A.A. Said, V. Stryland, Opt. Lett. 1989, 14, 955.