Supporting Information for

Tuning the dynamic magnetic behaviour and proton conductivity via water-induced reversible single-crystal to single-crystal structural transformation [†]

Xiao-Qin Ji,
a Rong Sun,
b Jin Xiong,
b Hao-Ling Sun,
*a and Song Gao^{*b}

^aDepartment of Chemistry and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing 100875, P. R. China. E-mail: <u>haolingsun@bnu.edu.cn</u>;

^b Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China. E-mail: gaosong@pku.edu.cn;

Name	1	1'
Formula	C ₁₅ H ₁₄ DyN ₅ O ₄ ClF	C ₁₂ H ₁₃ DyN ₄ O ₆ ClF
Mr	545.26	526.21
Crystal system	monoclinic	monoclinic
Space group	$P2_{1}/n$	$P2_{1}/n$
T(K)	100 K	100 K
a(Å)	11.0804(3)	11.3360(8)
b(Å)	9.9562(3)	10.1810(4)
c(Å)	16.3993(4)	13.7684(10)
<i>a</i> (°)	90	90
$\beta(^{\circ})$	96.098(2)	101.143(7)
γ(°)	90	90
$V(Å^3)$	1798.90(8)	1559.08(17)
Z	4	4
μ (mm ⁻¹)	4.345	5.016

Table S1. Crystallographic data and Structure Refinement for complexes 1 and 1'.

F(000)	1052	1012
GOF	1.042	1.093
Data collected	9022	7307
Unique	4256	3689
R _{int}	0.0422	0.0423
$R1, wR2[I \ge 2\sigma(I)]$	0.0350, 0.0652	0.0506, 0.0828
R1, wR2 [all data]	0.0457, 0.0716	0.0824, 0.0941

Table S2. Selected Bond Distances (Å) in complexes 1 and 1'.

	1		1'
Dy-O1	2.158(3)	Dy-O1	2.196(5)
Dy-O2	2.376(3)	Dy-O2	2.319(4)
Dy-O2A	2.339(3)	Dy-O2A	2.442(5)
Dy-N1	2.458(4)	Dy-O5	2.464(5)
Dy-N3	2.604(4)	Dy-N1	2.493(6)
Dy-Cl1	2.7482(11)	Dy-N3	2.574(6)
Dy-O3	2.412(3)	Dy-O3	2.509(5)
Dy-O4	2.397(3)	Dy-O4	2.448(5)
O1-Dy-O2	134.08(10)	Dy-O6	2.494(5)
O1-Dy-O2A	149.22(11)	O1-Dy-O2	134.75(17)
		O1-Dy-O2A	134.76(17)
		O1-Dy-O5	139.98(18)

Table S3. Weak Interaction in **1**.

D-H	d(D-H) (Å)	<dha(°)< th=""><th>d(DA) (Å)</th><th>d(HA) (Å)</th><th>А</th></dha(°)<>	d(DA) (Å)	d(HA) (Å)	А
C13- H13b	0.961	119.28	3.197	2.617	F1(0.5- x,0.5+y,0.5-z)
C13-H13c	0.960	162.49	3.618	2.691	F1(0.5- x,0.5+y,0.5-z)

Table S4. Hydrogen Bonds in 1'.

D-H	d(D-H) (Å)	<dha(°)< th=""><th>d(DA) (Å)</th><th>d(HA) (Å)</th><th>А</th></dha(°)<>	d(DA) (Å)	d(HA) (Å)	А
O4-H4b	0.867	146.76	3.167	2.407	Cl1(-0.5+x,0.5- y,0.5+z)
O5-H5a	0.875	167.92	3.098	2.237	Cl1(-0.5+x,0.5- y,0.5+z)
O6-H6a	0.855	113.02	2.978	2.538	O6(1.5- x,0.5+y,1.5-z)
O6-H6b	0.855	156.64	3.147	2.344	Cl1(-0.5+x,0.5- y,0.5+z)

<i>T</i> (K)	χт	χs	α	τ''(s)
6	4.32	0.017	0.11	1.31
6.5	3.41	0.016	0.10	0.72
7	2.79	0.016	0.089	0.41
7.5	2.35	0.016	0.076	0.25
8	2.13	0.016	0.068	0.17
8.5	1.91	0.016	0.060	0.11
9	1.76	0.015	0.059	0.079
9.5	1.66	0.015	0.060	0.059
10	1.53	0.016	0.046	0.043
10.5	1.44	0.016	0.041	0.032
11	1.35	0.017	0.036	0.025
11.5	1.29	0.016	0.038	0.019
12	1.22	0.018	0.030	0.015
12.5	1.16	0.018	0.026	0.012
13	1.11	0.019	0.027	0.0094
13.5	1.07	0.020	0.020	0.0075
14	1.02	0.020	0.020	0.0060
14.5	0.98	0.021	0.013	0.0048
15	0.94	0.022	0.010	0.0039
15.5	0.91	0.019	0.025	0.0032
16	0.88	0.022	0.014	0.0026
16.5	0.85	0.022	0.011	0.0021
17	0.82	0.020	0.020	0.0017
17.5	0.80	0.025	0.0079	0.0014
18	0.77	0.022	0.016	0.0011
18.5	0.75	0.023	0.011	9.25E-4
19	0.73	0.026	0.013	7.56E-4
19.5	0.71	0.019	0.027	6.15E-4
20	0.69	0.021	0.024	5.03E-4
20.5	0.67	0.023	0.025	4.11E-4
21	0.66	0.027	0.020	3.38E-4
21.5	0.64	0.015	0.037	2.68E-4
22	0.62	0.014	0.038	2.17E-4
22.5	0.61	0.029	0.029	1.70E-4
23	0.60	0.016	0.040	1.53E-4
23.5	0.53	0.020	0.0093	1.19E-4
24	0.52	0.017	0.019	9.79E-5
24.5	0.51	0.0080	0.052	7.80E-5
25	0.50	0.0058	0.054	6.35E-5
25.5	0.49	0.0077	0.046	5.22E-5

Table S5. Relaxation fitting parameters from Least-Squares Fitting of $\chi(f)$ data under zero dc field of **1**.

26	0.48	0.0063	0.044	4.19E-5
26.5	0.47	0.012	0.029	3.50E-5
27	0.46	1E-4	0.053	2.77E-5

<i>T</i> (K)	χ _T	χs	α	τ''(s)
2	10.83	0.029	0.15	0.089
2.5	7.88	0.032	0.14	0.072
3	6.18	0.032	0.14	0.063
3.5	5.05	0.033	0.14	0.057
4	4.29	0.033	0.14	0.052
4.5	3.70	0.034	0.14	0.047
5	3.24	0.035	0.13	0.041
5.5	2.88	0.036	0.11	0.034
6	2.58	0.037	0.098	0.026
6.5	2.33	0.037	0.082	0.020
7	2.14	0.038	0.070	0.014
7.5	1.97	0.037	0.062	0.0099
8	1.82	0.039	0.052	0.0069
8.5	1.71	0.036	0.058	0.0048
9	1.60	0.036	0.053	0.0034
9.5	1.51	0.033	0.057	0.0024
10	1.42	0.033	0.054	0.0017
10.5	1.35	0.032	0.058	0.0013
11	1.28	0.022	0.072	9.19E-4
11.5	1.22	0.015	0.081	6.75E-4
12	1.16	0.043	0.052	5.06E-4
12.5	1.11	0.034	0.067	3.70E-4
13	1.068	0.032	0.074	2.70E-4
13.5	1.025	0.043	0.074	1.99E-4
14	0.99	0.013	0.11	1.49E-4
14.5	0.86	0.022	0.059	1.03E-4
15	0.77	0.0080	0.088	7.40E-5
15.5	0.73	0.027	0.044	5.63E-5
16	0.72	1.01E-5	0.10	3.94E-5
16.5	0.70	1.00E-5	0.11	2.91E-5
17	0.67	1.01E-5	0.096	2.18E-5
17.5	0.65	1.00E-5	0.12	1.62E-5
18	0.63	1.01E-5	0.093	1.22E-5

Table S6. Relaxation fitting parameters from Least-Squares Fitting of $\chi(f)$ data under zero dc field of **1**'.

KDa	1			1'		
KDS	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J
		0.003			0.011	
1	0.0	0.005	$\pm 15/2$	0.0	0.016	±15/2
		19.600			19.464	
		0.062			0.079	
2	180.0	0.076	$\pm 13/2$	169.1	0.100	±13/2
		16.743			16.604	
		1.362			2.221	
3	319.2	1.721	±9/2	309.1	3.708	±9/2
		18.113			12.395	
		0.628			2.217	
4	344.9	4.366	$\pm 5/2$	368.4	5.562	$\pm 5/2$
		10.834			11.767	
		8.631			2.086	
5	418.9	6.450	$\pm 11/2$	405.5	2.592	±11/2
		2.408			13.086	
		2.096			0.035	
6	489.9	2.944	±7/2	467.8	0.268	±7/2
		10.980			16.119	
		0.460			0.103	
7	534.2	1.348	$\pm 1/2$	531.6	0.224	$\pm 1/2$
		14.355			16.946	
		0.693			0.035	
8	571.1	0.893	$\pm 3/2$	616.5	0.099	$\pm 3/2$
		18.032			18.853	

Table S7. Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors and m_J values of the lowest Kramers doublets (KDs) of the individual Dy fragments of complexes 1 and 1'.

Table S8. Wavefunction composition for the eight Kramer doublets of the ${}^{6}H_{15/2}$ groun	ld
multiplet of complexes 1 and 1'.	

	wave functions
	96% ±15/2>
1	91% ±13/2>+5% ±9/2>+2% ±7/2>
	$14\% \pm 11/2 > +16\% \pm 7/2 > +22\% \pm 5/2 > +21\% \pm 3/2 > +21\% \pm 1/2 >$
1′	93% ±15/2>
	84% ±13/2>+4% ±11/2>+11% ±9/2>
	4% ±13/2>+58% ±11/2>+5% ±9/2>+19% ±7/2>+5% ±1/2>

		1	1'	
Temperature	Experimental $\chi_{\rm M}T$	Calculated $\chi_{\rm M}T$ values	Experimental $\chi_{\rm M}T$	Calculated $\chi_{\rm M}T$ values
(K)	values (cm ³ mol ⁻¹ K)	(cm ³ mol ⁻¹ K)	values (cm ³ mol ⁻¹ K)	(cm ³ mol ⁻¹ K)
2	20.16	19.59	18.52	16.76
3	18.68	17.54	16.73	15.28
4	17.23	16.33	15.56	14.50
5	16.25	15.55	14.80	14.03
6	15.57	15.01	14.29	13.72
7	15.09	14.63	13.93	13.49
8	14.73	14.34	13.67	13.33
9	14.44	14.11	13.46	13.20
10	14.20	13.93	13.29	13.11
11	14.00	13.79	13.15	13.03
12	13.85	13.67	13.04	12.97
13	13.73	13.57	12.96	12.92
14	13.61	13.49	12.89	12.87
15	13.51	13.42	12.82	12.84
16	13.44	13.36	12.78	12.81
17	13.36	13.31	12.73	12.79
18	13.30	13.27	12.70	12.77
19.	13.25	13.23	12.67	12.75
20	13.21	13.20	12.65	12.74
22	13.14	13.15	12.62	12.72
24	13.09	13.11	12.59	12.71
26	13.04	13.09	12.58	12.71
28	13.01	13.07	12.58	12.71
30	12.99	13.06	12.58	12.71
32	12.97	13.05	12.59	12.72
34	12.96	13.04	12.60	12.73
36	12.95	13.04	12.61	12.74
38	12.95	13.05	12.62	12.75
40	12.95	13.05	12.64	12.77
42	12.95	13.06	12.66	12.78
44	12.96	13.07	12.68	12.80
46	12.96	13.08	12.69	12.81
48	12.97	13.09	12.71	12.83
50	12.98	13.10	12.73	12.85
55	13.01	13.13	12.78	12.89
60	13.06	13.16	12.83	12.93
65	13.11	13.20	12.88	12.98
70	13.14	13.23	12.92	13.02

Table S9. The $\chi_M T$ values in 1 and 1' based on experiments and ab initio calculations.

75	13.16	13.26	12.97	13.06
80	13.19	13.29	13.01	13.10
85	13.21	13.32	13.05	13.14
90	13.25	13.35	13.09	13.18
95	13.28	13.38	13.13	13.21
100	13.31	13.41	13.16	13.25
110	13.36	13.46	13.22	13.31
120	13.42	13.50	13.29	13.37
130	13.47	13.54	13.35	13.42
140	13.52	13.58	13.40	13.46
150	13.56	13.62	13.44	13.51
160	13.60	13.65	13.49	13.55
170	13.63	13.68	13.53	13.58
180	13.67	13.70	13.56	13.62
190	13.70	13.73	13.59	13.64
200	13.73	13.75	13.62	13.67
210	13.76	13.77	13.65	13.70
220	13.79	13.79	13.67	13.72
230	13.82	13.80	13.69	13.74
240	13.84	13.82	13.71	13.76
250	13.87	13.83	13.73	13.77
260	13.89	13.84	13.74	13.79
270	13.91	13.85	13.76	13.80
280	13.94	13.87	13.77	13.82
290	13.98	13.87	13.80	13.83
300	14.09	13.88	13.85	13.84

Table	S10.	Fitted	exchange	coupling	constant	$J_{\rm exch}$,	the	calculated	dipole-dipole
interac	tion J	dipolar ar	nd the total	J between	Dy ³⁺ ion	s in 1 a	and 1	$1' (cm^{-1}).$	

on J_{dipolar} and the total J between Dy ³⁺ ions in 1 and 1' (cm ⁻¹).								
			1	1′				
		$J_{ m dipolar}$	4.60	3.76				
	J	J_{exch}	-0.50	-1.50				
		J	4.10	2.26				

Table S11. Proton conductivity of 1' at 25°C under variable relative humidity (RH).

RH / %	σ (S cm ⁻¹)
90	2.96×10 ⁻⁹
95	8.00×10 ⁻⁹
98	1.83×10 ⁻⁶

Table S12	. Proton co	onductivity	of 1'	at 98% RH	under v	variable	temperature.
		2					

<i>T</i> (°C)	σ (S cm ⁻¹)
25	1.83×10-6
30	2.26×10-6
40	4.12×10 ⁻⁶
50	5.49×10 ⁻⁶
60	7.8×10 ⁻⁶
70	1.01×10 ⁻⁵

Table S13.	Some typical	l examples	of lanth	anide o	coordinat	ion comp	olexes l	oehavi	ng as
conducting	g nanomagnet	s.							

	Structure	DC	U _{eff} (K)	σ (S cm ⁻¹)	RH %	Т	Ref	
		field				(°C)		
		(Oe)						
$\{[DyL(H_2O)_3]Cl\}_n$	2D	0	197	1.01×10 ⁻⁵	98	70	This	
							work	
[Dy(H ₂ bim) ₂ (H ₂ O) ₂ (NO ₃) ₂](NO ₃)	0D	2000	71.6/74.4	1.16×10 ⁻³	100	35	3b	
$[\mathrm{Dy}_{72}(\mathrm{mda})_{24}(\mathrm{mdaH})_8(\mathrm{OH})_{120}(\mathrm{O})_8(\mathrm{NO}_3)_{16}](\mathrm{NO}_3)_8\cdot$	0D	0	6.5	1.20×10^{-2}	95	95	10c	
16CH ₃ OH · 168H ₂ O								
$\{[Dy(L)(O_x)(H_2O)]_n \cdot 1.5 H_2O\}$	3D	2000	36.5	9.06×10 ⁻⁵	95	75	10d	
$\{[Dy_4(OH)_4(L)_2(H_2O)_8]\cdot 4.6H_2O\cdot 1.4CH_3CN\}_n$	3D	2000	30.4	2.96×10 ⁻⁶	95	80	10e	
$[YbZn_2(SS/RR-L)_2(H_2O)_4](ClO_4)_3^{\cdot}5H_2O$	0D	1000	8.9	3.33×10 ⁻⁴	100	45	10f	
$(H_5O_2)_2(H)[Yb^{III}(hmpa)_4][Co^{III}(CN)_6]_2 \cdot 0.2H_2O$	3D	1000	31.2	1.70×10^{-4}	97	27	10g	
Abbreviations: H_2 bim=2,2'-biimidazole; mda $H_2 = N$ -methyldiethanolamine; H_2L = mucicacid, O_xH_2 =oxalicacid; Na_2H_2L = disodium-								
$2,2'$ -disulfonate- $4,4'$ -oxydibenzoic acid; $H_2L = (SS/RR)$ -cyclohexane- $1,2$ -diylbis(azanediyl)-bis(methylene)-bis(2-methoxyphenol);								
hmpa = hexamethyl-phosphoramide;								

	Structure	U _{eff} (K)	Ref				
${[DyL(Cl)(CH_3OH)] \cdot CH_3CN}_n$	2D	316	This work				
$\{[DyL(H_2O)_3]Cl\}_n$	2D	197	This work				
[Dy(L)Cl(CH ₃ OH)] _n	1D	556	20c				
$[Dy_2(L)_2Cl_2(CH_3OH)_3]_n \cdot nCH_3OH$	1D	195	22c				
[Dy(L)Cl(DMF)] _n	1D	399	22c				
$H_2L = N'$ -(5-bromo-2-hydroxybenzylidene)pyrazine-N-oxide-carbohydrazide) ^{20c,22c} .							

Table S14. Some typical examples of lanthanide coordination complexes based on similar ligand.

Fig. S1 3D supramolecular structure of **1** connected by hydrogen bonds.

Fig. S2 3D supramolecular structure of 1' connected by hydrogen bonds.

Fig. S3 Powder X-ray diffraction profiles of 1, 1' and 1-recover together with a simulation from the single crystal data. (When 1' was placed in a mixed solvent of the same proportion as the mother liquor for 2 h at 80 °C, it reabsorbed the solvent molecules and converted to 1 with a notable color change from dark-red to orange. PXRD study revealed that the structure of 1-recover was identical to that of 1)

Fig. S4 Plots of M-H for 1 (a) and 1' (b).

Fig. S5 *Ac-f* curves measured under zero *dc* fields for **1**. Solid lines were fitted using a generalized Debye relaxation model, simultaneously to $\chi'(f)$ and $\chi''(f)$ curves.

Fig. S6 Cole-cole plots of 1 under zero dc field.

Fig. S7 Hysteresis loop for 1 at different temperatures with sweep rates of 500 Oe/s.

Fig. S8 Hysteresis loop for 1 measured with different sweep rates at 2 K.

Fig. S9 *Ac-f* curves measured under zero *dc* fields for **1'**. Solid lines were fitted using a generalized Debye relaxation model, simultaneously to $\chi'(f)$ and $\chi''(f)$ curves.

Fig. S10 Cole-cole plots of 1' under zero dc field.

Fig. S11 Hysteresis loop for 1'at different temperatures with sweep rates of 500 Oe/s.

Fig. S12 Hysteresis loop for 1' measured with different sweep rates at 2 K.

Fig. S13 Calculated model structure for complexes 1 (a) and 1' (b); H atoms are omitted.

Fig. S14 The magnetization blocking barriers in complexes 1 (a) and 1' (b). The thick black lines represent the Kramers doublets as a function of their magnetic moment along the magnetic axis. The green lines correspond to diagonal quantum tunneling of magnetization (QTM); the blue line represent off-diagonal relaxation process. The numbers at each arrow stand for the mean absolute value of the corresponding matrix element of transition magnetic moment.

