Electronic Supporting Information

Constitutional Isomers of Carbazole-Benzoyl-Pyrimidine-Based Thermally Activated Delayed Fluorescence Emitters for Efficient OLEDs

Jayabalan Pandidurai,^{+a} Jayachandran Jayakumar,^{+a} Yi-Kuan Chen,^a Chia-Min Hsieh,^a and Chien-Hong Cheng^{*,ab}

^aDepartment of Chemistry, National Tsing Hua University No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan

^bDepartment of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan

⁺These authors contributed equally

Email: <u>chcheng@mx.nthu.edu.tw</u>

Keywords: benzoyl-pyrimidine, π - π interaction, TADF, carbazole, OLEDs

Table of Contents	Page No
General Information	S-2
TD-DFT for singlet (S_1) and triplet (T_1) states	S-3
Photophysical and TRPL-properties	S-9
Photoelectron spectroscopy and thermal properties	S-13
Chemical structures of the device materials	S-14
EL-properties of the devices	S-15
References	S-17
Spectral data of compounds	S-19
ORTEP Diagram and X-ray data of the emitters	S-23
Mass spectra of the emitters	S-26

General Information

¹H NMR and ¹³C NMR spectra were measured on a Mercury 400 spectrometer. UV-vis absorption spectra were recorded on a Hitachi U-3300 spectrophotometer. Fluorescence and Phosphorescence spectra were recorded on a Hitachi F-7000 fluorescence spectrophotometer. The absolute photoluminescence quantum efficiencies (PLQYs) of the doped films were determined using an integrating sphere under an N₂ atmosphere. The thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were performed on a thermal analyzer (2-HT, Mettler-Toledo) at a heating rate of 10 °C/min. from 30 °C to 800 °C under nitrogen. Transient PL decay measurements were done using an Edinburgh FLS 980 instrument. The HOMO levels of the emitters in the neat film were determined by a Riken Keiki AC-2 photoelectron spectrometer with a UV source. The X-ray diffraction was carried out on an X-ray diffractometer (X8 APEX, Bruker).

DFT Calculation

Molecular geometry optimizations and electronic properties of these materials were carried out by using the Gaussian 09 program with density functional theory (DFT) and time-dependent DFT (TD-DFT for S_1 and T_1 states) calculations in which the Becke's three-parameter functional combined with Lee, Yang, and Parr's correlation functional (B3LYP) hybrid exchange-correlation functional with the 6-31G (d,p) basis set was used.¹ The molecular orbitals were visualized by Gaussview 5.0 software.^{1,2} All calculations were performed in the gas phase.

OLEDs Fabrication and Measurement

Organic materials used in device fabrication were purified by sublimation. Devices were fabricated by vacuum deposition onto pre-coated ITO glasses with a sheet resistance of 15 Ω /square at a pressure lower than 10⁻⁶ Torr. Organic materials were deposited at the rate of 0.5~1.2 Å s⁻¹. LiF and Al were deposited at the rate of 0.1 Å s⁻¹ and 3-10 Å s⁻¹, respectively. The rest of the procedures is similar to the reported method.³ Current-voltage-luminance (I-V-L) characterization and electroluminescent spectra were measured and recorded by using a programmable source meter (2400, Keithley) and a spectroradiometer (CS2000A, Konica Minolta). External quantum efficiencies and power efficiencies were determined by the Lambertian emission device assumption.

State		Excitation	E _{cal} (eV) ^a	λ _{cal} (nm) ^b	f°
		Singlet Excited States			
S_1	HOMO-1 → LUMO HOMO → LUMO	-0.21432 0.67011	2.6258	472	0.0090
S ₂	HOMO-1 \rightarrow LUMO HOMO \rightarrow LUMO	0.67097 0.21443	2.6739	463	0.0054
S_3	HOMO-2 \rightarrow LUMO	0.70505	3.0049	412	0.0000
S_4	HOMO-3 \rightarrow LUMO	0.70592	3.0342	408	0.0001
		Triplet Excited States			
T ₁	HOMO-1 \rightarrow LUMO HOMO \rightarrow LUMO	-0.27494 0.63232	2.5055	494	-
T ₂	HOMO-1 \rightarrow LUMO HOMO \rightarrow LUMO	0.62485 0.26538	2.5626	483	-
T_3	HOMO-7 \rightarrow LUMO	0.65404	2.9219	424	
T_4	HOMO-2 \rightarrow LUMO	0.7029	3.0035	412	-
	$S_1 - T_1 = \Delta E_{ST} \qquad 2.6$	258 - 2.5055 = 0.1203 eV	V		

Table S1. Singlet and triplet excitation states, and transition configurations of the 35CzBPym by TD-DFT at the B3LYP/6-31G (d,p).

State		Excitation	E _{cal} (eV) ^a	$\lambda_{cal} \ (nm)^b$	f°
	S	nglet Excited States			
\mathbf{S}_1	$HOMO \rightarrow LUMO$	0.70353	2.4703	501	0.0161
S ₂	HOMO-1 \rightarrow LUMO	0.70345	2.5961	477	0.0051
S_3	HOMO-3 \rightarrow LUMO	0.70592	2.8964	428	0.0002
S ₄	HOMO-2→ LUMO	0.70504	3.4853	427	0.0000
		Triplet Excited States			
T ₁	$HOMO \rightarrow LUMO$	0.69111	2.3599	525	-
T ₂	HOMO-11 → LUMO HOMO-1 → LUMO	-0.10550 0.68484	2.4281	494	-
T ₃	HOMO-7 → LUMO HOMO-3 → LUMO HOMO-2 → LUMO	-0.22924 0.64705 -0.12095	2.9208 3.0035	428	-
T ₄	HOMO-3 → LUMO HOMO-2 → LUMO	0.13478 0.68929	2.9162	425	-
	$S_1 - T_1 = \Delta E_{ST} \qquad 2.470$	3 - 2.3599 = 0.110 eV	T		

Table S2. Singlet and triplet excitation states, and transition configurations of the 35tCzBPym by TD-DFT at the B3LYP/6-31G (d,p).

State		Excitation	$E_{\rm cal}~({\rm eV})^{\rm a}$	$\lambda_{cal} (nm)^b$	ſ°
		Singlet Excited States			
S_1	HOMO-1 → LUMO HOMO → LUMO	-0.20549 0.67332	2.6259	472	0.0210
S ₂	HOMO-1 \rightarrow LUMO HOMO \rightarrow LUMO	0.67233 0.20549	2.9200	424	0.0004
S_3	HOMO-3 \rightarrow LUMO	0.70550	3.0813	402	0.0031
S_4	HOMO-2 \rightarrow LUMO	0.70512	3.2000	387	0.0000
		Triplet Excited States			
T ₁	HOMO-7 \rightarrow LUMO HOMO-1 \rightarrow LUMO HOMO \rightarrow LUMO HOMO \rightarrow LUMO+2	-0.10504 -0.18314 0.65611 0.10232	2.4991	496	-
T ₂	HOMO-1 \rightarrow LUMO HOMO \rightarrow LUMO	0.66537 0.18097	2.8637	432	-
T ₃	HOMO-7 \rightarrow LUMO	0.64789	3.0081	412	-
T_4	HOMO-3 \rightarrow LUMO	0.70110	3.0604	405	
	$S_1 - T_1 = \Delta E_{ST} \qquad 2.62$	259 - 2.4991 = 0.126 eV			

Table S3. Singlet and triplet excitation states, and transition configurations of the 25CzBPym by TD-DFT at the B3LYP/6-31G (d,p).

State	Excitation		E _{cal} (eV) ^a	$\lambda_{cal} (nm)^b$	f°
		Singlet Excited States			
S_1	$HOMO \rightarrow LUMO$	0.66554	2.5121	494	0.0324
S_2	HOMO-1 \rightarrow LUMO	0.66258	2.7759	467	0.0055
S ₃	HOMO-3 \rightarrow LUMO	0.70572	2.9915	414	0.0060
S_4	$HOMO-2 \rightarrow LUMO$	0.70520	3.0777	403	0.0000
		Triplet Excited States			
T ₁	HOMO → LUMO HOMO-1 → LUMO	0.66023 -0.20568	2.4075	515	-
T ₂	HOMO-7 \rightarrow LUMO HOMO-1 \rightarrow LUMO HOMO \rightarrow LUMO	0.17053 0.64344 0.20025	2.6982	460	-
T ₃	HOMO-3 \rightarrow LUMO	0.69980	2.9656	418	-
T ₄	HOMO-7 \rightarrow LUMO HOMO-1 \rightarrow LUMO HOMO \rightarrow LUMO+2	0.62094 -0.16335 -0.10496	3.0008	413	
	$S_1 - T_1 = \Delta E_{ST} \qquad 2.512$	21 - 2.4075 = 0.1046 eV			

Table S4. Singlet and triplet excitation states, and transition configurations of the 25tCzBPym by TD-DFT at the B3LYP/6-31G (d,p).

Emitter	Holes (S_1)	Particles (S ₁)
25CzBPym		
35CzBPym		
25tCzBPym		
35tCzBPym		

Table S5. Natural transition orbitals in the first singlet excitation states of the emitter.

Emitter	Holes (T_1)	Particles (T ₁)
25CzBPym		Section Contraction
35CzBPym		
25tCzBPym		
35tCzBPym		

Table S6. Natural transition orbitals in the first triplet excitation states of the emitter.

Photophysical properties

Fig S1. a) Absorbance and b) fluorescence spectra of 35CzBPym in various solvents at RT (10⁻⁵ M).

Fig S2. a) Absorbance and b) fluorescence spectra of 25CzBPym in various solvents at RT (10-5 M).

Fig S3. a) Absorbance and b) fluorescence spectra of 35tCzBPym in various solvents at RT (10⁻⁵ M).

g S4. a) Absorbance and b) fluorescence spectra of 25tCzBPym in various solvents at RT (10⁻⁵ M).

Fi

Fig S5. Fluorescence (Fluo.) spectra of a) 35CzBPym, b) 25CzBPym, c) 35tCzBPym, and d) 25tCzBPym in toluene (10⁻⁵ M) solution at room temperature and phosphorescence (Phos.) spectra in toluene (10⁻⁵ M) at 77 K.

Fig S6. Fluorescence (Fluo.) and phosphorescence spectra of a) 35CzBPym and b) 25CzBPym doped in mCBP thin films (7 wt%).

Fig S7. Prompt fluorescence spectra of a) 35CzBPym, b) 25CzBPym, c) 35tCzBPym, and d) 25tCzBPym doped in mCBP thin films (7 wt%) at 300 K.

Fig S8. The transient PL decay curves of 7 wt% a) 35CzBPym and b) 25CzBPym doped in mCBP thin films at various temperatures.

Photoelectron spectroscopy and Thermal properties

Fig S9. Photoelectron spectroscopy a) of 25CzBPym, b) 25tCzBPym, c) 35CzBPym, and d) 35tCzBPym measured in neat films.

Fig S10. The thermogravimetric analysis (TGA) of (a) 35CzBPym and 35tCzBPym and (b) 25CzBPym and 25tCzBPym. The differential scanning calorimetry (DSC) of (c) 35CzBPym and 35tCzBPym and (d) 25CzBPym and 25tCzBPym.

EL-properties of the devices

Chemical structures of the device materials

Fig S11. Structures of the materials used in the devices and schematic representation of the device

Table S7. Summarized doped-device optimization of emitters with different host matrix.

Fig S12. Comparison of PL and EL-characteristics of emitters in doped thin-films (a-d)

Fig S13. a) Luminance-voltage-current efficiency of 35CzBPym, 35tCzBPym, 25CzBPym, and 25tCzBPym -based devices.

Entry Diuc	-green	I (ad m^{-2})	EOE(0/2)	EQE(%) at	$CIE(\mathbf{v},\mathbf{v})$	EL _{max}	Dof
Entry En	itter	$L_{\rm max}$ (cd III -)	$EQL_{max}(70)$	1,000 cd m ⁻²	$\operatorname{CIE}(\mathbf{x},\mathbf{y})$	(nm)	Kei.
1 35Cz	BPym	14286	13.5	9.1	(0.16, 0.30)	482	This
2 25Cz	BPym	15278	15.3	8.7	(0.15, 0.34)	486	WORK
3 35tC	zBPym	19314	19.1	9.7	(0.17, 0.42)	494	i nis work
4 25tC	zBPym	32077	23.3	13.6	(0.20, 0.47)	500	
5 6,7-D	CQx-Ca	-	21.5	-	(0.37, 0.57)	541	4a
6 Cz	PCN	13100	12.8	-	(0.20, 0.36)	494	4a
7 tCz	PCN	13200	5.1	-	(0.19, 0.35)	490	4a
8 MeO	CzPCN	9300	1.4	-	(0.30, 0.49)	524	4a
9 2Py0	CNICz	-	17.1	-	(0.31, 0.57)	-	4b
10 2PyC	NBCz	-	14.5	-	(0.34, 0.58)	-	4b
11 Ac-	HPM	-	20.9	11.7	(0.21, 0.44)	-	4c
12 Ac-	PPM	-	19.0	11.2	(0.21, 0.44)	-	4c
13 Ac-	MPM	-	24.5	10.1	(0.19, 0.37)	-	4c
14 MFA	c-PPM	-	20.4	-	(0.16, 0.23)	470	4d
15 MXA	c-PPM	-	12.2	-	(0.16, 0.20)	462	4d
16 MFA	c-PM	-	17.1	-	(0.16, 0.21)	469	4d
17 MXA	Ac-PM	-	14.3	-	(0.16,0.19)	460	4d
18 Ac	-PM	-	11.4	-	(0.15,0.15)	458	4d
19 PX	ZPM	-	19.9	14.2	(0.33,0.57)	-	4e
20 PXZ	MePM	-	22.2	15.4	(0.30,0.56)	-	4e
21 PXZ	PhPM	-	24.6	18.2	(0.32,0.57)	-	4e
22 Ac-11	MHPM	-	24.0	11.2	(0.17,0.28)	-	4f
23 Ac-21	MHPM	-	19.8	9.6	(0.17,0.27)	-	4f
24 Ac-31	MHPM	-	17.8	-	(0.16,0.15)	-	4f
25 P	m2	-	31.3	-	(0.32,0.59)	-	4g
26 P	m5	-	30.6	-	(0.32,0.57)	-	4g
27 Ac-46	DPPM	-	11.8	-	(0.16,0.21)	-	4h

Table S8. EL performances of representative blue to green pyrimidine-based TADF OLEDs.^a

29	PXZ-muPXR	22730	29.1	20.5	(0.32,0.55)	529	4i
30	PXZ-mdPYR	7762	27.5	16.5	(0.29,0.49)	514	4i
31	PXZ-2mPYR	12476	26.3	8.9	(0.23,0.42)	502	4i

^a The results were obtained from reference.

References

1 C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158-6170.

a). M. Ernzerhof and G. E. Scuseria, *J. Chem. Phys.*, 1999, **110**, 5029-5036. b) Frisch, M. J. Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford, CT, 2013.

3 I. S. Park, S. Y. Lee, C. Adachi and T. Yasuda, Adv. Funct. Mater., 2016, 26, 1813-1821.

4. a) U. Tsiko, O. Bezvikonnyi, G. Sych R. Keruckiene, D. Volyniuk, J. Simokaitiene, I. Danyliv, Y. Danyliv, A. Bucinskas, X.Tan, and J. VidasGrazulevicius. Journal of Advanced Research 2021, 33, 41–51; b) J. S. Jang, H. L. Lee, J. Y. Lee, J. Mater. Chem. C, 2019, 7, 12695-12703; c) R. Komatsu, H. Sasabe, Y. Seino, K. Nakao and J. Kido, J. Mater. Chem. C, 2016, 4, 2274-2278; d) I. S. Park., H. Komiwamaa and T. Yasuda, *Chem. Sci.*, 2017, **8**, 953–960; e) K. Wu, T. Zhang, L. Zhan, C. Zhong, S. Gong, N. Jiang, Z. H. Lu and C. Yang, Chem. - Eur. J., 2016, 22, 10860-10866; f) R. Komatsu, T. Ohsawa, H. Sasabe, K. Nakao, Y. Hayasaka and J. Kido, ACS Appl. Mater. Interfaces, 2017, 9, 4742–4749; K. Pan, S. Li, Y. Ho, Y. Shiu, W. Isai, M. Jiao, W. Lee, C. Wu, C. Chung, T. Chatteriee, Y. Li, K. g) Wong, H. Hu, C. Chen and M. Lee, Adv. Funct. Mater., 2016, 26, 7560-7571; h) K. Nakao, H. Sasabe, J. Kido, Adv. optical. Mater., 2017, 5, 1600843; i) T. Serevicivs, R. Skaisgiris, S. Tumkeicivs and S. Jursenas, ACS Appl. Mater. Interfaces, 2012, 12, 10727-10736.

f1 (ppm)

¹H AND ¹³C Spectra of compound (35tCzBPym)

¹H AND ¹³C Spectra of compound (25CzBPym)

f1 (ppm)

X-Ray crystallographic analysis:

General Crystal Growing Conditions: X-ray quality single crystals of **35CzBPym** and **25CzBPym**, were collected from the sublimed tube after cooling down to room temperature (sublimed temperatures are 210 and 215 °C for **35CzBPym** and **25CzBPym** respectively).

ORTEP diagram of compound **35CzBPym** (CCDC = 1906824)

Crystal data and structure refinement for (35CzBPym).

Identification code	191047lt_0m	
Empirical formula	C35 H22 N4 O	
Formula weight	514.56	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 7.8835(5) Å	α= 89.180(3)°.
	b = 15.0324(10) Å	β= 86.928(3)°.
	c = 21.3072(14) Å	$\gamma = 83.005(3)^{\circ}$.
Volume	2502.6(3) Å ³	
Z	4	
Density (calculated)	1.366 Mg/m ³	
Absorption coefficient	0.084 mm ⁻¹	

1072
0.20 x 0.15 x 0.05 mm ³
0.957 to 26.436°.
-9<=h<=9, -18<=k<=18, -26<=l<=26
38234
10009 [R(int) = 0.0277]
97.7 %
Semi-empirical from equivalents
0.7454 and 0.6928
Full-matrix least-squares on F ²
Full-matrix least-squares on F ² 10009 / 0 / 721
Full-matrix least-squares on F ² 10009 / 0 / 721 1.128
Full-matrix least-squares on F ² 10009 / 0 / 721 1.128 R1 = 0.0467, wR2 = 0.1290
Full-matrix least-squares on F ² 10009 / 0 / 721 1.128 R1 = 0.0467, wR2 = 0.1290 R1 = 0.0649, wR2 = 0.1738
Full-matrix least-squares on F ² 10009 / 0 / 721 1.128 R1 = 0.0467, wR2 = 0.1290 R1 = 0.0649, wR2 = 0.1738 n/a

ORTEP diagram of compound **25CzBPym** (CCDC = 1906825)

Crystal data and structure refinement for (25CzBPym).

Identification code

180546LT_a

Empirical formula		C35 H22 N4 O	
Formula weight		514.56	
Temperature		100(2) K	
Wavelength		0.71073 Å	
Crystal system		Orthorhombic	
Space group		P n a 21	
Unit cell dimensions		a = 9.0970(3) Å	α=90°.
		b = 15.4473(6) Å	β= 90°.
		c = 35.8227(14) Å	$\gamma = 90^{\circ}$.
Volume		5034.0(3) Å ³	
Z		8	
Density (calculated)		1.358 Mg/m ³	
Absorption coefficient		0.084 mm ⁻¹	
F(000)		2144	
Crystal size		0.10 x 0.03 x 0.02 mm ³	
Theta range for data collection		1.137 to 26.508°.	
Index ranges		-11<=h<=9, -19<=k<=19, -	44<=1<=44
Reflections collected		46967	
Independent reflections		10371 [R(int) = 0.0371]	
Completeness to theta = 25.242°	2	100.0 %	
Absorption correction		Semi-empirical from equiva	lents
Max. and min. transmission		0.9485 and 0.8536	
Refinement method		Full-matrix least-squares or	1 F ²
Data / restraints / parameters		10371 / 1 / 721	
Goodness-of-fit on F ²		1.048	
Final R indices [I>2sigma(I)]		R1 = 0.0377, wR2 = 0.0829)
R indices (all data)		R1 = 0.0518, $wR2 = 0.0883$	1
Absolute structure parameter		-0.3(5)	
Extinction coefficient		n/a	
Largest diff. peak and hole	0.205 and -0.22	24 e.Å ⁻³	

Mass spectra of 35CzBPym

Mass spectra of 35tCzBPym

Mass spectra of 25CzBPym

Mass spectra of 25tCzBPym

