Lightweight and flexible conducting polymer sponges and hydrogels for electromagnetic interference shielding

Biporjoy Sarkar,^a Xinda Li,^a Eric Quenneville,^b Louis-Philippe Carignan,^c Ke Wu^c and Fabio Cicoira^{a,*}

^a Department of Chemical Engineering, Polytechnique Montreal, Canada, H3T 1J4

^b Biomomentum, Laval, Canada, H7L 5C1

^c Department of Electrical Engineering, Polytechnique Montreal, Canada, H3T 1J4

*Corresponding authors: biporjoy.sarkar@polymtl.ca and fabio.cicoira@polymtl.ca

Fig. S1 The rectangular opening of the WR 90 waveguide (22.86 mm \times 10.16 mm) completely covered with PEDOT:PSS hydrogel film.

Fig. S2 (a-b) Compressive stress-strain curve of PEDOT:PSS sponge (sample 2 and sample 3).

Fig. S3 Force versus position plot (indentation test). 0.5 mm diameter spherical indenter attached to a load cell was indented on the hydrogel film to estimate the Young's modulus. Black and red solid line represent raw data and fitted curve, respectively.

Fig. S4 (a-b) Variation of normalized current as a function of strain under unconfined compression for PEDOT:PSS sponge (sample 2 and sample 3).

Fig. S5: Variation of porosity as a function of PEDOT:PSS hydrogel film thickness.

Fig. S6: (a-b) Bar plot of pore area as a function of number of sampling for uncompressed and compressed PEDOT:PSS sponge.

Fig. S7: (a-d) Bar plot of pore area as a function of number of sampling for 15 μ m, 28 μ m, 38 μ m and 228 μ m thick PEDOT:PSS hydrogel film.

Fig. S8: Variation of EMI SE as a function of frequency for a pure PEDOT:PSS film.

EMI	PEDOT:PSS sponges		PEDOT:PSS hydrogel films				Pristine PEDOT:PSS film (40 μm)
parameters (dB)	Uncompressed	Compressed	15 μm	28 μm	38 μm	228 μm	
SE _R	6.81	10.77	18.16	33.23	33.76	27.28	9.38
SEA	6.67	12.11	24.54	23.05	30.54	68.47	8.23
SET	13.48	22.92	42.70	56.30	64.30	95.83	17.60

Table S1: Comparison table of EMI shielding properties of PEDOT:PSS sponges, hydrogel films and a pristine PEDOT:PSS film. All the SE values are estimated at a representative frequency value of 9 GHz.

Fig. S9: (a-b) Variation of R, T and A as a function of frequency for uncompressed and compressed PEDOT:PSS sponges.

Fig. S10: (a-d) Variation of R, T and A as a function of frequency for 15 μ m, 28 μ m, 38 μ m and 228 μ m thick PEDOT:PSS hydrogel film.

Sponges	Porosity	SE _R	SE _A	SET
Uncompressed	96±1.28	6.81	6.67	13.48
Compressed	48.6±1.1	10.77	12.11	22.92

Table S2: Values of porosity and SE for both uncompressed and compressed PEDOT:PSS sponge. Note, SE values are taken at a representative frequency value of 9 GHz.

Fig. S11: (a-b) Variation of SE_A and SE_T as a function of thickness and porosity for PEDOT:PSS hydrogel films. Note, SE values are taken at a representative frequency value of 9 GHz.