Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supplementary Information for

Metallic Cavity Nanolasers at the Visible Wavelength Based on In Situ Solution Grown Au-coated Perovskite Nanowires†

Xiaohao Jia,‡^{a,b} Jian Wang,‡^{c,d} Zhitao Huang,^{a,b} Kaiwen Chu,^{a,b} Kuankuan Ren,^e Mingfei Sun,^{a,b} Zhijie Wang,*^{a,b} Peng Jin,*^{c,d} Kong Liu,^{a,b} and Shengchun Qu*^{a,b}

- ^{a.} Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Science, Beijing,100083, China.
- ^{b.} Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
- ^{c.} School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
- ^{d.} Key Laboratory of Micro-systems and Micro-structures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin 150080, China.
- ^{e.} School of Mathematical Information, Shaoxing University, Shaoxing, 312000, China.

Section 1: The reaction mechanism of Au-CH₃NH₃PbBr₃ nanowires.

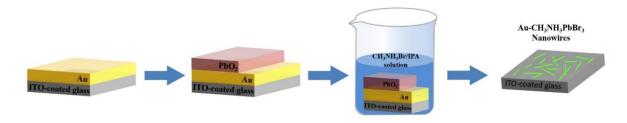


Fig. S1. Synthesis process of Au-CH₃NH₃PbBr₃ nanowires. The Au films and the PbO₂ films were deposited on the ITO glass substrates by a clever design, and reacted with 0.2 mg mL⁻¹~10 mg mL⁻¹ CH₃NH₃Br isopropyl alcohol solutions for 10 min ~ 4 h to obtain the Au-CH₃NH₃PbBr₃ nanowires.

The as-grown Au-CH₃NH₃PbBr₃ nanowires were synthesized by a modified solution method,¹ as Fig. S1 schematically illustrated. First, the gold thin film was deposited on the ITO-coated glass substrate by the evaporation method. Then, the as-grown gold thin film was partially covered with the PbO₂ film prepared by the electrochemical deposition. The tentatively exposed gold film could participate in the reaction for the growth of Au-CH₃NH₃PbBr₃ nanowires.² Immersed in the CH₃NH₃Br isopropanol solution, the PbO₂ films were primarily converted to $CH_3NH_3PbBr_3$ nanowires as follows (Equations 1-3):³ $CH_3NH_3Br \leftrightarrow CH_3NH_2 + HBr$

$$PbO_2 + 4HBr \to PbBr_2 + 2H_2O + Br_2$$
 (1)

$$PbBr_2 + CH_3NH_3Br \rightarrow CH_3NH_3PbBr_3 \tag{3}$$

Initially, the CH₃NH₃Br decomposed to CH₃NH₂ and HBr in the isopropanol solvent, which was a reversible reaction. Afterwards, the generated HBr reacted with the immersed PbO₂ quickly to form PbBr₂, accompanied by the generation of H₂O and Br₂, and then the PbBr₂ continued to react with CH₃NH₃Br to synthesize CH₃NH₃PbBr₃. As the reaction went on, plenty of intermediate products like HBr, Br₂ and H₂O formed, which would assist the dissolution of the gold films as follows.

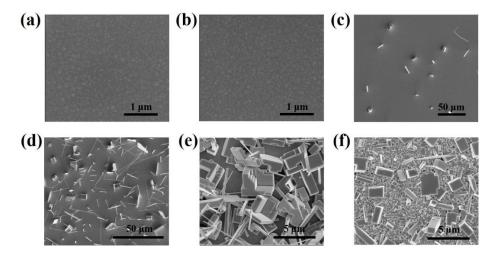
Because the bromide ions, not only act as strong ligand of Au⁺ and Au³⁺, but also possess high oxidation potential under acidic condition, the dissolution mechanism of gold by bromide can be discussed from two aspects.² Firstly, the gold could be oxidized by bromide ions to AuBr₂-(Equation 4). While the AuBr₂⁻ is unstable, and then disproportionates to stable AuBr₄⁻ and Au (Equations 5). This process can be represented by the reactions as:⁴ $Au + 2Br \leftrightarrow AuBr_2 + e$

$$Au + 2Br \leftrightarrow AuBr_2^- + e$$

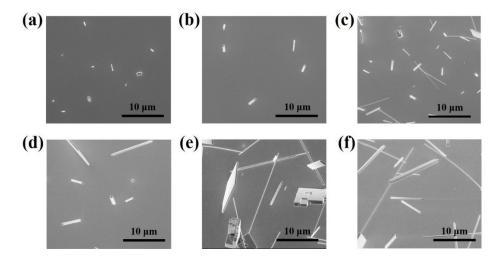
$$3AuBr_2^- \leftrightarrow AuBr_4^- + 2Au + 2Br^-$$
(4)

$$AuBr_2 \leftrightarrow AuBr_4 + 2Au + 2Br$$
 (5)

Secondly, the gold could be oxidized to AuBr₄- directly, which could be represented by the reaction (Equations 6):5


$$2Au + 3Br_2 + 2Br^- \leftrightarrow 2AuBr_4^- \tag{6}$$

The Br₂ can be hydrolyzed to form the hypobromous acid. And then the gold is oxidized by the hypobromous acid. Thus the Equation 6 can be described by the following detailed reactions (Equations 7-8),⁶ where the gold is oxidized by the Br_2 and complexed by bromide ions. $Br_2 + H_2O \leftrightarrow HOBr + H^+ + Br^-$


$$2Au + 3H0Br + 5Br^{-} + 3H^{+} \leftrightarrow 2AuBr_{4}^{-} + 3H_{2}O$$
 (8)

Assisted by the intermediate products from the growth process of CH₃NH₃PbBr₃, the dissolution of gold occurs after the synthesis of CH₃NH₃PbBr₃ nanowires. Then we can introduce gold to the surface of CH₃NH₃PbBr₃ nanowires, since the bromide ions on the surface of CH₃NH₃PbBr₃ nanowires could complex with gold ions. All these chemical reactions about the dissolution of gold are reversible in the solution, causing the co-existence of AuBr₂. AuBr₄⁻ and Au on the surface of Au-CH₃NH₃PbBr₃ nanowires.

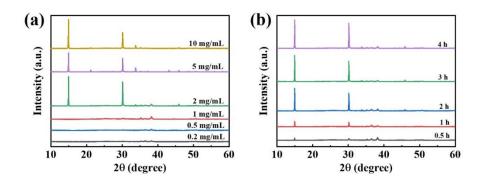

After the Au/PbO₂ films reacted with CH₃NH₃Br isopropanol solution for 2-4 hours, the asgrown samples were put on a hot plate at 50 °C for 5 min, which made the gold complex turn into stable form of Au. Compared with perovskite grown on the ITO-coated glass without gold films in our previous work, the optimal reaction time changes from 4 hours to 2 hours, which proves that the consumption of the intermediate products accelerates the reaction process.⁷ Ultimately, we obtained the CH₃NH₃PbBr₃ nanowires encapsulated by the gold thin layers, defined as Au-CH₃NH₃PbBr₃ nanowires. Specifically, the metallic cavity nanolasers in this work are based on the Au-CH₃NH₃PbBr₃ nanowires with five surfaces coated by gold films, because the transfer process would strip the as-grown nanowires away from the ITO-coated glass to the SiO_2 substrate, causing one side broken off.

Fig. S2. The SEM images of Au-CH₃NH₃PbBr₃ nanowires grown at various concentrations of CH₃NH₃Br isopropyl alcohol solutions. (a) 0.2 mg mL⁻¹, (b) 0.5 mg mL⁻¹, (c) 1 mg mL⁻¹, (d) 2 mg mL⁻¹, (e) 5 mg mL⁻¹, (f) 10 mg mL⁻¹.

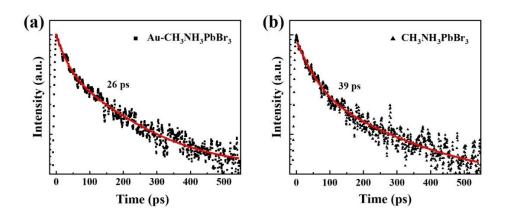


Fig. S3. The SEM images of Au-CH₃NH₃PbBr₃ nanowires grown at 2 mg mL⁻¹ CH₃NH₃Br isopropyl alcohol solutions for various reaction time. (a) 10 min, (b) 30 min, (c) 1 h, (d) 2 h, (e) 3 h, (f) 4 h.

Fig. S4. The XRD patterns of Au-CH₃NH₃PbBr₃ nanowires grown at (a) various concentrations of CH₃NH₃Br isopropyl alcohol solutions and (b) various reaction times.

Section 2: The numerical and experimental results of the devices.

Fig. S5. The time-resolved photoluminescence decay (TRPL) of the (a) Au-CH₃NH₃PbBr₃ nanolasers and (b) $CH_3NH_3PbBr_3$ nanolasers at high excitation density (1 P_{th}).

	Material	τ ₁ (φ ₁)	τ ₂ (φ ₂)	τ _{ave}
Spontaneous Emission	Au-CH ₃ NH ₃ PbBr ₃	1.06 ns (72.81%)	6.13 ns (27.19%)	2.44 ns
	CH ₃ NH ₃ PbBr ₃	6.13 ns (41.99%)	10.98 ns (58.01%)	8.94 ns
Stimulated Emission	Au-CH ₃ NH ₃ PbBr ₃	26 ps (99.98%)	145 ps (0.02%)	26 ps
	CH₃NH₃PbBr₃	39 ps (98.20%)	200 ps (1.80%)	42 ps

Table S1. The TRPL fitting parameters at the spontaneous emission and the stimulated emission. The

biexponential decay curves are fitting by $I(t) = A_1 exp\left(\frac{t}{\tau_1}\right) + A_2 exp\left(\frac{t}{\tau_2}\right), \text{ where } \tau_1 \text{ and } \tau_2 \text{ are the first lifetime and the second lifetime. The $\phi 1$ and $\phi 2$ are the proportion of the τ_1 and τ_2, defined as <math display="block">\varphi_1 = \frac{A_1 \tau_1}{A_1 \tau_1 + A_2 \tau_2} \text{ and } \varphi_2 = \frac{A_2 \tau_2}{A_1 \tau_1 + A_2 \tau_2}. \text{ The τ_{ave} is the average lifetime calculated by $\tau_{ave} = \tau_1 \varphi_1 + \tau_2 \varphi_2$.}$

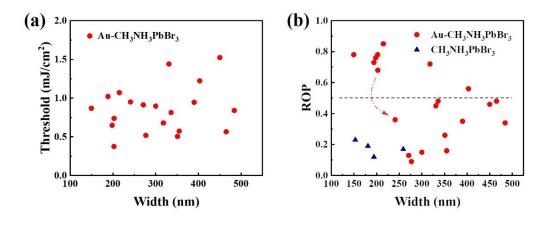


Fig. S6. The (a) threshold and (b) ROP value against the width of the nanowires.

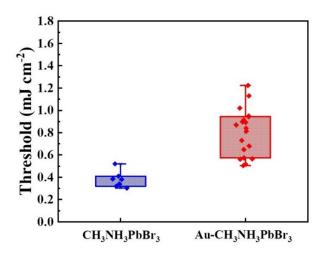
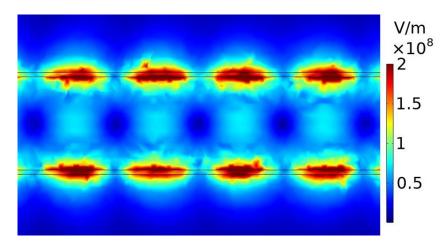



Fig. S7. The box chart of threshold of the CH₃NH₃PbBr₃ nanolasers and Au-CH₃NH₃PbBr₃ nanolasers.

Fig. S8. Top-view calculated electric field distribution of Au-CH₃NH₃PbBr₃ nanolasers at the interface of Au shell and CH₃NH₃PbBr₃.

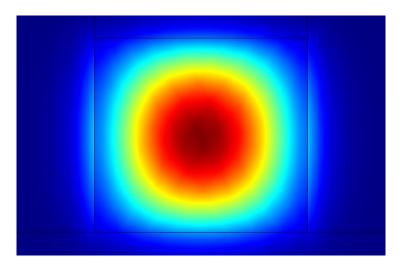
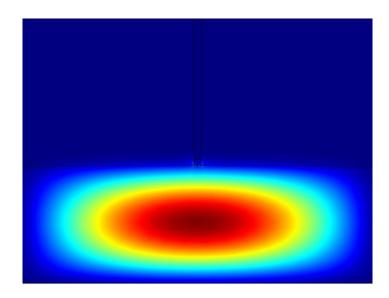
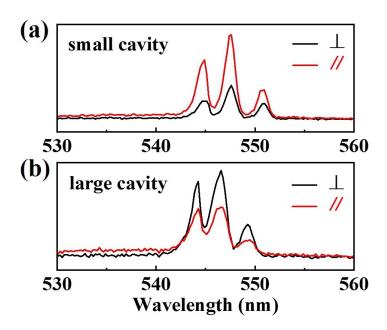




Fig. S9. Calculated electric field distribution of CH₃NH₃PbBr₃ nanolasers with nanowire width of 500 nm.

Fig. S10. Calculated electric field distribution of Au-CH₃NH₃PbBr₃ nanolasers with nanowire width of 100 nm

Fig. S11. The polarization property of Au-CH₃NH₃PbBr₃ nanolasers with small size (150 nm) and large size (400 nm).

- 1. K. Ren, J. Wang, S. Chen, Q. Yang, J. Tian, H. Yu, M. Sun, X. Zhu, S. Yue, Y. Sun, K. Liu, M. Azam, Z. Wang, P. Jin, S. Qu and Z. Wang, *Laser Photonics Rev.*, 2019, **13**, 1800306.
- 2. R. Sousa, A. Futuro, A. Fiúza, M. C. Vila and M. L. Dinis, *Minerals Engineering*, 2018, **118**, 16-23.
- 3. J. H. Huang, K. J. Jiang, X. P. Cui, Q. Q. Zhang, M. Gao, M. J. Su, L. M. Yang and Y. Song, *Sci. Rep.*, 2015, **5**, 15889.
- 4. B. PESIC and R. H. SERGENT, *Metall Mater. Trans. B*, 1993, **24B**, 419-431.
- 5. R. B. E. Trindade, P. C. P. Rocha and J. P. Barbosa, *Dissolution of gold in oxidized bromide solutions*, Springer Netherlands, 1994.
- 6. H. A. Liebhafsky, J. Am. Chem. Soc., 1934, **56**, 1500-1505.
- 7. K. Ren, J. Wang, K. Liu, Y. Huang, Y. Sun, M. Azam, P. Jin, Z. Wang, S. Qu and Z. Wang, *RSC Advances*, 2019, **9**, 19772-19779.