Electronic Supplementary Information
Sensitizing Phosphorescent and Radical Emitters via Triplet Energy Translation from CsPbBr_{3} Nanocrystals
Zongwei Chen, ${ }^{a b}$ Guijie Liang*c and Kaifeng Wu*b
${ }^{\text {a }}$ Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou
450052, P. R. China
${ }^{\mathrm{b}}$ State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
E-mail: kwu@dicp.ac.cn
${ }^{c}$ Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, P. R. China
E-mail: guijie-liang@hbuas.edu.cn

Fig. S1. Transmission electron microscope (TEM) image of CsPbBr 3 NCs. Their average edge length (L) and standard deviation are labeled.

Fig. S2. TA kinetics of PtOEP probed at the ground bleach center ($\sim 535 \mathrm{~nm}$). The red solid line is a single-exponential fit.

Fig. S3. TA kinetics probed at 470 nm (the absorption of ${ }^{3} \mathrm{NCA}^{*}$) for NC-NCA (black open square) and NC-NCA//PtOEP (red open circle). The green solid lines are single-exponential fits of them.

Fig. S4. TA kinetics of PTM-TPA probed at the excited state absorption feature ($\sim 630 \mathrm{~nm}$). The black solid lineis a single-exponential fit.

Materials and Methods

Chemicals. Cesium carbonate $\left(\mathrm{Cs}_{2} \mathrm{CO}_{3}\right.$, Sigma-Aldrich, 99.9%), lead(II) bromide (PbBr_{2}, Alfa Aesar, $98+\%$), zinc bromide (ZnBr_{2}, Alfa Aesar, 99.9%), oleic acid (OA, Sigma-Aldrich, 90%), oleylamine (OAm, Acros Organics, 80-90\%), 1-octadecene (ODE, Sigma-Aldrich, 90\%), 1naphthalene carboxylic acid (NCA, Alfa Aesar, 98\%); 2,3,7,8,12,13,17,18-octaethyl-21H,23Hporphine platinum(II) (PtOEP) was purchased from Sigma-Aldrich. (4-(4'-triphenylamine-yl)-tetrachlorophenyl)bis-(pentachlorophenyl)-methyl (PTM-TPA) was synthesized as described
previously. ${ }^{1}$

Synthesis of $\mathbf{C s P b B r}_{3} \mathbf{N C s}$. CsPbBr_{3} perovskite NCs were synthesized following previously reported procedure. ${ }^{2}$ Briefly, $0.256 \mathrm{~g} \mathrm{Cs}_{2} \mathrm{CO}_{3}, 0.9 \mathrm{~mL}$ oleic acid (OA), and 9 mL 1 -octadecene (ODE) were loaded into a 25 mL 3 -neck flask and vacuum-dried for 2 h at $120^{\circ} \mathrm{C}$ using a Schlenk line. Then the mixture was heated to $140^{\circ} \mathrm{C}$ under Ar atmosphere until all $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ powders were dissolved. The Cs-oleate precursor was kept at $100{ }^{\circ}$ Cto prevent Cs-oleate precipitation. In another 100 mL 3-neck flask, $\operatorname{PbBr}_{2}(0.225 \mathrm{~g})$ and $\mathrm{ZnBr}_{2}(0.552 \mathrm{~g})$ was dissolved in a mixture of $\mathrm{OA}(6 \mathrm{~mL})$, $\mathrm{ODE}(15 \mathrm{~mL})$, and oleylamine ($\mathrm{OAm}, 6 \mathrm{~mL}$). The precursor solution of Pb and Br were vacuum-dried for 40 min at $120^{\circ} \mathrm{C}$ and cooled down to $90^{\circ} \mathrm{C}$ under Ar atmosphere. Then 1.2 mL Cs precursor solution was injected to the initiate the reaction. The reaction was quenched after 2 min by cooling the flask in an ice bath. The crude solution was then cooled to the room temperature, and centrifuged at 3500 rpm for 10 min to remove the unreacted salts asthe precipitate. NCs were then precipitated by adding methyl acetate dropwise until the mixture turned turbid. The dried NCs were collected and re-dissolved in hexane and stored in glovebox. The concentrations of NCs can be estimated from $A=\varepsilon b c$, where A and $\varepsilon s t a n d$ for absorbance and extinction coefficient, b stands for the thickness of the quartz cuvette. Using this equation, c is calculated to be $0.66 \mu \mathrm{M}$ for $\mathrm{CsPbBr}_{3} \mathrm{NCs}$.

Preparation of CsPbBr_{3} NCs-NCA complexes. The $\mathrm{CsPbBr}_{3} \mathrm{NC}-\mathrm{NCA}$ complexes were prepared by simply adding 1-naphthalene carboxylic acid (NCA) powders into the $\mathrm{CsPbBr}_{3} \mathrm{NCs}$ solution followed by sonication and filtering. The average number of NCA ligands per NC (n) can be estimated from the absorption spectrum using the extinction coefficient reported for $\mathrm{CsPbBr}_{3} \mathrm{NCs}$ of similar emission energy and that of NCA: $n=[A(\mathrm{NCA}) / \varepsilon(\mathrm{NCA})] /[A(\mathrm{NC})$ $/ \varepsilon(\mathrm{NC})]=561$, where A and $\varepsilon s t a n d$ for absorbance and extinction coefficient, respectively.

Preparation of $\mathrm{CsPbBr}_{3} \mathrm{NCs}-\mathrm{NCA} / /(\mathrm{PtOEP}, \mathbf{P T M}-\mathbf{T P A})$ complexes. The $\mathrm{CsPbBr}_{3} \mathrm{NC}-$ $\mathrm{NCA} / /(\mathrm{PtOEP}$, PTM-TPA) samples were prepared by adding PtOEP or PTM-TPA powders into the CsPbBr_{3} NC-NCA complexes prepared above. The concentrations of PtOEP and PTMTPA can also be estimated from $A=\varepsilon b c$, from which $C($ PtOEP $)=0.21 \mathrm{mM}, C($ PTM-TPA $)=0.11$ mM .

Femtosecond pump-probe TA. The femtosecond pump-probe TA measurements were performed using a regenerative amplified Ti:sapphire laser system (Coherent; 800 nm , $70 \mathrm{fs}, 6 \mathrm{~mJ} / \mathrm{pulse}$, and 1 kHz repetition rate) as the laser source and a Femto-100 spectrometer (Time-tech spectra) as the spectrometer. The white-light continuum ($350-650 \mathrm{~nm}$) (WLC) probe pulse were generated by focusing the $800-\mathrm{nm}$ beam (split from regenerative amplifier with a tiny portion) onto 2 mm thick CaF_{2}. The time delay ($0-8 \mathrm{~ns}$) between the pump and probe pulses were varied by a motorized optical delay line. A mechanical chopper operating at 500 Hz was used to modulate the pump pulses such that the fs-TA spectra with and without the pump pulses can be recorded alternately. The samples well dispersed in hexane were contained in a $1-\mathrm{mL}$ air-free quartz cuvettes under a continuous magnetic stirring condition ensuring that the photoexcited volume of the sample was kept fresh during the course of the fs-TA measurements.

Nanosecond pump-probe TA. Nanosecond TA was performed with the EOS spectrometer (Ultrafast Systems LLC). The pump beam is generated in the same way as the femtosecond TA experiment described above. A different white light continuum (380-1700 nm, 0.5 ns pulse width, 20 kHz repetition rate) was used, which was generated by focusing a Nd:YAG laser into a photonic crystal fiber. The delay time between the pump and probe beam was controlled by a digital delay generator (CNT-90, Pendulum Instruments).

Kinetics fitting. The decay curve for free NCs can be fitted by a single-exponential decay function, whereas the NC-NCA sample needs to be fitted by a 2 -exponential function. The average lifetime $\tau_{\text {ave }}$ was calculated according to equation below,

$$
\tau_{\text {ave }}=\frac{A_{1} \tau_{1}+A_{2} \tau_{2}}{A_{1}+A_{2}}
$$

A_{i} and τ_{i} are the amplitude and lifetime, respectively, of the i -th exponential component.
The lifetime of NCs is $\tau_{N C}$ and the decay rate can be described as $\frac{1}{\tau_{N C}}$. Similarly, the decay rate of NC-NCA can be described as $\frac{1}{\tau_{\text {ave }}}$. Therefore, for NC-NCA hybrid system, the TET rate is $\frac{1}{\tau_{a v e}}-\frac{1}{\tau_{N C}}$ and TET yield is $1-\frac{\tau_{a v e}}{\tau_{N C}}$.

For $\mathrm{CsPbBr}_{3} \mathrm{NCs}-\mathrm{NCA} / /(\mathrm{PtOEP}, \mathrm{PTM}-\mathrm{TPA})$ complexes, The lifetime of NCA is $\tau_{N C A}$ and the decay rate can be described as $\frac{1}{\tau_{N C A}}$. Similarly, the decay rate of NCs-NCA//(PtOEP, PTM-TPA) can be described as $\frac{1}{\tau^{\prime}}$. Therefore, for $\mathrm{CsPbBr}_{3} \mathrm{NCs}-\mathrm{NCA} / /(\mathrm{PtOEP}, \mathrm{PTM}-\mathrm{TPA})$ hybrid system, the energy transfer rate is $\frac{1}{\tau^{\prime}}-\frac{1}{\tau_{N C A}}$ and the yield is $1-\frac{\tau^{\prime}}{\tau_{N C A}}$.

Photoluminescence quantum yield measurement. The samples were all prepared in a glovebox and sealed in air-free quartz cuvettes. CsPbBr_{3} photoluminescence quantum yields were determined relative to Coumarin 307 in ethanol (75\%). PtOEP and PTM-TPA photoluminescence quantum yields were determined relative to CV (cresyl violet) in ethanol (57.8\%). The quantum yield was calculated according to equation below,

$$
\Phi_{x}=\Phi_{r} \bullet \frac{1-10^{-A_{r}}}{1-10^{-A_{x}}} \bullet \frac{F_{x}}{F_{r}} \bullet \frac{\eta_{x}^{2}}{\eta_{r}^{2}}
$$

where Φ_{r} is the quantum yield of the reference sample (C307 or CV). A_{i} is the absorption at the
excitation wavelength, F_{i} is the integrated photon number, and η_{x} and η_{r} are the refractive indexes for hexane and ethanol, respectively.

Diffusion limited rate constant calculation. The diffusion coefficient can be expressed as: ${ }^{3,4}$
$D_{1}=\frac{k_{B} T}{6 \pi \eta r_{1}}$
, where k_{B} is the Boltzmann constant, T is the temperature, η is the solvent viscosity, $\mathrm{r}_{1}\left(\mathrm{r}_{2}\right)$ is the first (second) molecule's equivalent radius (the radius of sphere with the same collision volume of the molecule). The reaction rate constant is written as: $k=4 \pi N R_{12} D_{12}$, where N is the Avogadro constant, R_{12} is the sum of r_{1} and r_{2}, D_{12} is the sum of D_{1} and D_{2}.
Assuming η of 0.3 mPa for toluene, r_{1} of 3.2 nm for CsPbBr_{3} QDs and r_{2} of 0.5 nm for PtOEP, the diffusion constants are calculated to be:

$$
D_{1}=2.3 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1} \quad D_{2}=1.5 \times 10^{-9} \mathrm{~m}^{2} \mathrm{~s}^{-1}
$$

The diffusion limited reaction rate constant is calculated to be: $\mathrm{k}_{1}=4.84 \times 10^{10} \mathrm{~s}^{-1} \mathrm{M}^{-1}$.
For PtOEP concentration of 0.21 mM , the diffusion limited pseudo first order energy transfer rate can be estimated to be $\mathrm{k}_{\mathrm{TET}}=1 \times 10^{7} \mathrm{~s}^{-1}$, corresponding to a time constant of $\tau_{\mathrm{TET}}=100 \mathrm{~ns}$.
In a similar way, assuming r_{2} of 1 nm for PTM-TPA, $D_{2}=7.4 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}, \mathrm{k}_{2}=3 \times 10^{10} \mathrm{~s}^{-1} \mathrm{M}^{-1}$,For PTM-TPA concentration of 0.11 mM , the diffusion limited pseudo first order energy transfer rate can be estimated to be $\mathrm{k}_{\mathrm{TET}}=3.3 \times 10^{6} \mathrm{~s}^{-1}$, corresponding to a time constant of $\tau_{\mathrm{TET}}=300 \mathrm{~ns}$.

Detection of ${ }^{\mathbf{2}} \mathbf{P T M}$-TPA ${ }^{\text {feature. The kinetic equations are as follows: }}$
$\frac{d\left[^{3} N C A^{*}\right]}{d t}=-\left(k_{1}+k_{2}\right)\left[{ }^{3} N C A^{*}\right]$
$\frac{d\left[{ }^{2} P T M-T P A^{*}\right]}{d t}=k_{1}\left[{ }^{3} N C A^{*}\right]-k_{3}\left[{ }^{2} P T M-T P A^{*}\right]$
$\left[{ }^{3} N C A^{*}\right]=\left[{ }^{3} N C A^{*}\right]_{t=0} \times \exp \left[-\left(k_{1}+k_{2}\right) t\right]$
$\left[{ }^{2} P T M-T P A^{*}\right]=\frac{k_{1}}{k_{1}+k_{2}-k_{3}}\left[{ }^{3} N C A^{*}\right]_{t=0} \times\left\{-\exp \left[-\left(k_{1}+k_{2}\right) t\right]+\exp \left(-k_{3} t\right)\right\}$

Using the corresponding experimental rate constants of k_{1}, k_{2}, and k_{3}, we can obtain $\frac{k_{1}}{k_{1}+k_{2}-k_{3}}=$ 0.0052 , which means the concentration of ${ }^{2} \mathrm{PTM}-\mathrm{TPA}^{*}$ is ~ 200-fold lower than the concentration of NCA* This quantitatively explains why we cannot detect the signal of ${ }^{2} \mathrm{PTM}^{*}-\mathrm{TPA}^{*}$ in NC-

NCA/PTM-TPA system.

References

1 S. Dong, W. Xu, H. Guo, W. Yan, M. Zhang and F. Li, Effects of substituents on luminescent efficiency of stable triaryl methyl radicals, Phys. Chem. Chem. Phys., 2018, 20, 18657-18662.
2 Y. Dong, T. Qiao, D. Kim, D. Parobek, D. Rossi and D. H. Son, Precise Control of Quantum Confinement in Cesium Lead Halide Perovskite Quantum Dots via Thermodynamic Equilibrium, Nano Lett., 2018, 18, 3716-3722.
3 R. A. Alberty and G. G. Hammes, Application of the Theory of Diffusion-Controlled Reactions to Enzyme Kinetics, The Journal of Physical Chemistry, 1958, 62 (2), 154-159.
4 Z. Xu, Z. Huang, C. Li, T. Huang, Francesco. Evangelista, M. Tang and T. Lian, Tuning the Quantum Dot (QD)/Mediator Interface for Optimal Efficiency of QD-Sensitized Near-Infrared-toVisible Photon Upconversion Systems, ACS Appl. Mater. Interfaces, 2020, 12, 36558-36567.

