Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Self-powered solar-blind UV/visual dual-band photodetection based on a solid-state PEDOT:PSS/α-Ga₂O₃ nanorod array/FTO photodetector

Ming-Ming Fan,** Kang-Li Xu*, Xiu-Yan Li,* Gao-Hang He,*b and Ling Cao,**

^a College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China.

^b Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China.

* Corresponding Author:

fanmingming08@163.com; caoling@tyut.edu.cn; ghhe2018@sinano.ac.cn.

Fig. S1. Absorption of PEDOT:PSS film on glass in logarithmic scale.

The same processes in the article were employed to fabricate PEDOT:PSS film on glass. The absorption spectrum was investigated by a double-beam UV-vis spectrophotometer. Glass substrate was selected as the background. Thus, the absorption of PEDOT:PSS film can be evaluated with the elimination of the absorption of glass substrate.

Fig. S2. Plot and linear fit of $ln(I_{dark})$ as a function of voltage.

For thermionic emission and V>3kT/q, the *I-V* characteristic of PEDOT:PSS/ α -Ga₂O₃ Schottky junction is fitted by the following equations:¹

$$I_{dark} = I_0 \exp(qV/nkT) \tag{1}$$

$$I_0 = SA^*T^2 \exp(-\phi_b/kT) \tag{2}$$

$$\ln(I_{dark}) = \ln(I_0) + qV/nkT \tag{3}$$

where I_0 is the saturation current, S is the contact area, A^* is the effective Richardson coefficient, q is the electron charge, ϕ_b is the barrier height, k is the Boltzmann constant, T is the absolute temperature, and n is the ideality factor. As shown in equation (3), n and ϕ_b can be evaluated by the slop and the intercept according to the plot of $\ln(I_{dark})$ vs V, respectively. A^* is assumed to be 33 A cm⁻² K⁻² by taking the

electron effective mass of 0.276 $m_{0.}^2 S$ is about 0.25 cm². Therefore, *n* and ϕ_b can be roughly estimated to be ~7.3 and ~0.93 eV, respectively.

References:

- 1. R. Suzuki, S. Nakagomi, Y. Kokubun, N. Arai and S. Ohira, *Appl. Phys. Lett.*, 2009, **94**, 222102.
- 2. H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille and M. Rérat, *Phys. Rev. B*, 2006, **74**, 195123.