Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information

From structural phase transition to highly sensitive lifetime based

luminescent thermometer: multifaceted modification of thermometric

performance in Y_{0.9-x}Nd_xYb_{0.1}PO₄ nanocrystals

K. Maciejewska^{1*}, M. Szalkowski¹, A. Bednarkiewicz¹, L. Marciniak^{1*}

¹Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna

2, 50-422 Wroclaw, Poland

* corresponding author: <u>k.maciejewska@intibs.pl</u> <u>l.marciniak@intibs.pl</u>

KEYWORDS luminescent thermometry, lifetime, Yb³⁺, phonon-assisted, orthophosphates

Luminescence decay profiles were fitted using the double-exponential function:

$$I(t) = A_1 \cdot e^{\frac{-t}{t_1}} + A_2 \cdot e^{\frac{-t}{t_2}} + y_0$$
(1)

The average lifetime was calculated as follows:

$$\tau_{avr} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2} \tag{2}$$

Figure S1. The XRD patterns of Y_{0.9-x}Nd_xYb_{0.1}PO₄ where x: 0.15, 0.2, 0.25, 0.30, 0.40, 0.50.

Figure S2. The thermal evolution of emission of $Y_{0.9-x}Nd_xYb_{0.1}PO_4$ upon 808 nm excitation line measured in the temperature range of 123-563K.

Figure S3. The thermal evolution of decay profiles of $Y_{0.9-x}Nd_xYb_{0.1}PO_4$ upon λ_{ex} = 808 nm (λ_{em} = 999 nm) measured in the temperature range of 123-563K.

Figure S4. The thermal evolution of luminescence decay profile of Yb^{3+} ions in $Y_{0.9}Yb_{0.1}PO_4$ nanocrystals.

Figure S5. The luminescence quantum efficiency (QY) measured for $Y_{0.9-x}Nd_xYb_{0.1}PO_4$ upon λ_{ex} = 808 nm as a function of Nd³⁺ concentration.

Figure S6. The temperature resolution of luminescent thermometers based on $Y_{0.9}$. $_xNd_xYb_{0.1}PO_4$ nanocrystals.