The sensing mechanism of pristine and transition metals doped $Zn_{12}O_{12}$,

 $Sn_{12}O_{12}$ and $Ni_{12}O_{12}$ nanocages towards NH_3 and PH_3 : A DFT study

Yuanchao Li ^a, Xin Li^{*} ^a, Yanling Xu^b

* Corresponding authors

a. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China

E-mail: lixin@hit.edu.cn Tel:+86-0451-86282153

 b. School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China

Fig. S1. Vibrational spectra of $Zn_{12}O_{12}$, $Sn_{12}O_{12}$ and $Ni_{12}O_{12}$ nanocages.

Fig. S2. ESP surfaces of (a) $Zn_{11}TiO_{12}$, (b) $Zn_{11}CrO_{12}$, (c) $Zn_{11}FeO_{12}$, (d) $Sn_{11}TiO_{12}$, (e) $Sn_{11}CrO_{12}$, (f) $Sn_{11}FeO_{12}$, (g) $Ni_{11}TiO_{12}$, (h) $Ni_{11}CrO_{12}$, and (i) $Ni_{11}FeO_{12}$, respectively.

Fig. S3. The stable structures for the adsorption of NH_3 on (a) $Zn_{11}TiO_{12}$, (b) $Zn_{11}CrO_{12}$, (c) $Zn_{11}FeO_{12}$, (d) $Sn_{11}TiO_{12}$, (e) $Sn_{11}CrO_{12}$, (f) $Sn_{11}FeO_{12}$, (g) $Ni_{11}TiO_{12}$, (h) $Ni_{11}CrO_{12}$, and (i) $Ni_{11}FeO_{12}$, respectively.

	E_{H}	E_L	E_g	η	μ	ω	Φ	%ΔΦ	τ
$Zn_{11}TiO_{12}$	-4.19	-2.72	1.47	0.74	-3.46	8.12	3.46	-	-
$Zn_{11}TiO_{12}/NH_3$	-3.92	-2.29	1.63	0.82	-3.11	5.91	3.11	-10.12	$1.2 \times 10^{6} s$
$Zn_{11}CrO_{12}$	-4.65	-2.74	1.91	0.96	-3.70	7.15	3.70	-	-
$Zn_{11}CrO_{12}/NH_3$	-4.37	-2.34	2.03	1.02	-3.36	5.54	3.36	-9.19	$3.3 \times 10^3 \text{ s}$
$Zn_{11}FeO_{12}$	-5.39	-2.74	2.65	1.33	-4.07	6.24	4.07	-	-
$Zn_{11}FeO_{12}/NH_3$	-5.10	-2.34	2.76	1.38	-3.72	5.01	3.72	-8.60	$0.5 \times 10^3 m s$
Sn ₁₁ TiO ₁₂	-3.44	-1.76	1.68	0.84	-2.60	4.02	2.60	-	-
$Sn_{11}TiO_{12}/NH_3$	-4.35	-1.93	2.42	1.21	-3.14	4.07	3.14	20.77	1.9×10^{11} ns
Sn ₁₁ CrO ₁₂	-4.94	-1.92	3.02	1.51	-3.43	3.90	3.43	-	-

Table S1 Electronic properties including energy level, energy gap, hardness (η), electronic chemical potential (μ), electrophilicity index (ω) and work function (Φ). All parameters are in eV.

Sn ₁₁ CrO ₁₂ /NH ₃	-4.72	-1.71	3.01	1.51	-3.22	3.43	3.22	-6.12	12 ns
$Sn_{11}FeO_{12}$	-5.89	-2.15	3.74	1.87	-4.02	4.32	4.02	-	-
Sn ₁₁ FeO ₁₂ /NH ₃	-5.69	-1.96	3.73	1.87	-3.83	3.92	3.83	-4.73	104 ns
Ni ₁₁ TiO ₁₂	-6.47	-4.88	1.59	0.80	-5.68	20.26	5.68	-	-
Ni ₁₁ TiO ₁₂ /NH ₃	-5.67	-4.09	1.58	0.79	-4.88	15.07	4.88	-14.08	3.5×10 ¹⁷ s
Ni ₁₁ CrO ₁₂	-6.45	-5.06	1.39	0.70	-5.76	23.83	5.76	-	-
Ni ₁₁ CrO ₁₂ /NH ₃	-6.18	-4.68	1.50	0.75	-5.43	19.66	5.43	-5.73	$2.4 \times 10^2 \text{ s}$
Ni ₁₁ FeO ₁₂	-6.65	-4.74	1.91	0.96	-5.70	16.98	5.70	-	-
Ni ₁₁ FeO ₁₂ /NH ₃	-6.27	-4.40	1.87	0.94	-5.34	15.22	5.34	-6.32	6.9×10 ⁸ s