Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information for

Designed Borophene/TMDs Hybrid Catalysts for Enhanced Hydrogen Evolution Reaction

Yuxing Lin,^{#a} Mingxin Yu,^{#a} Xiaoyan Li,^{#a} Weicheng Gao,^a Licheng Wang,^a Xinli Zhao,^a Min Zhou,^a Xiaojing Yao^{b*}, Maoshuai He^{c*}, Xiuyun Zhang^{*a}

¹ College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China

²College of Physics and Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024, China

³ State Key Laboratory of Eco-Chemical Engineering, Ministry of Education, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China

Figure S1. Adsorption free energies of H atoms on freestanding (a) α -BR, (b) β -BR and (c) β_{12} -BR. Insets are the structure of α -BR, β -BR, and β_{12} -BR sheet, T₁, T₂, T₃, T₄ refers to the H adsorption site.

Figure S2. The structures (a-i) and relative energies(j-l) of α -BR/VS₂, β -BR/VS₂ and β_{12} -BR/VS₂ with three types of interlayer stackings: (a, d, g) T₂-S, (b, e, h) T₂-V and (g, h, i) T₂-H.

Figure S3. The structures (a-i) and relative energies(j-l) of α -BR/MoS₂, β -BR/MoS₂ and β_{12} -BR/MoS₂ with three types of interlayer stackings: (a, d, g) T₂-S, (b, e, h) T₂-V and (g, h, i) T₂-H.

Figure S4. Top (up-side/down-side) and side views of α -BR/MoS₂(a, d, g), β -BR/MoS₂ (b, e, h) and β_{12} -BR/MoS₂(c, f, i) heterostructures.

Figure S5. Variations of energies and geometries against the time for AIMD simulations. The simulation is run at 300K for 6000fs.

Figure S6. (a-f) Scheme of 1H-5H adsorption on the Borophene sublayer.

Figure S7. (a-f) Scheme of 1H-5H adsorption on the TMS_2 sublayer.

Figure S8. The free energies of H atoms on S sites of BR/TMDs at different H coverage.

Figure S9. The interlayer binding energies and charges transfer of β -BR/TMS₂ (TM=V, Mo) with different H coverage.

Figure S10. Electronic band structures of MoS_2 monolayer under (a) 0%, (b) -4% and (a) 4% strain. The red and blue lines denote the electronic states of S atom and Mo atom of MoS_2 monolayer,, respectively.