Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

## Facet-Dependent Electrical Conductivity Properties of GaN Wafers

Pei-Lun Hsieh,‡<sup>a</sup> Gautam Kumar,‡<sup>b</sup> Yen-Yu Wang,<sup>c</sup> Yu-Jung Lu,<sup>cd</sup> Lih-Juann Chen<sup>\*ae</sup> and Michael H. Huang<sup>\*be</sup> <sup>a</sup>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan. E-mail: ljchen@mx.nthu.edu.tw <sup>b</sup>Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan. Email: hyhuang@mx.nthu.edu.tw <sup>c</sup>Department of Physics, National Taiwan University, Taipei 10617, Taiwan <sup>d</sup>Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan <sup>e</sup>Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan



Fig. S1 SEM image of a GaN wafer that was cut and broken to expose side facets.



Fig. S2 XRD pattern of a GaN wafer used for conductivity measurements.



**Fig. S3** (a) UV–vis absorption spectrum and (b) diffuse reflectance spectrum of a GaN wafer. The continuous absorption from 400 to 800 nm should result from the solid sample holder with a black back-side support.



**Fig. S4** Multiple I-V curves recorded with tungsten probes contacting (a)  $\{10^{1}0\}/\{1100\}$  and (b)  $\{0001\}$  surfaces of an intrinsic GaN wafer.



**Fig. S5** Multiple I-V curves recorded with tungsten probes simultaneously contacting the  $\{10^{1}0\}$  and  $\{0001\}$  surfaces of an intrinsic GaN wafer.



Fig. S6 Expanded I-V curve with tungsten probes contacting both  $\{10^{1}0\}$  and  $\{0001\}$  faces of a GaN wafer.