Supporting Information

A combined bottom-up and top-down strategy to fabricate lanthanide

hydrate@2D MOF composite nanosheets for direct white light

emission

Jianping Tang,^{ab} Zhenxin Liang,^a Mengyi Huang,^a Shaodong Su,^a Yuehong Wen,^{*ac} Qi-Long Zhu ^{ac} and Xintao Wu ^{ac}

^aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China ^bCollege of Chemistry, Fuzhou University, Fuzhou, 350002, China ^cUniversity of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding Authors. E-mail: <u>yhwen@fjirsm.ac.cn</u>

Empirical formula	$C_{22}H_{32}N_4O_9Zn$
M	561.88
Crystal system	triclinic
Space group	<i>P</i> -1
<i>a</i> (Å)	9.561(6)
<i>b</i> (Å)	11.067(7)
<i>c</i> (Å)	14.378(9)
α (°)	104.135(2)
β(°)	95.491(9)
γ(°)	115.421(8)
$V/\text{\AA}^3$	1297.1(14)
Ζ	2
D_c/g cm ⁻³	1.439
μ/mm^{-1}	1.003
$2\theta_{\text{range}}(\circ)$	4.734 to 54.996
h, k, l, ranges	-12 to 12,
	-14 to 14,
	-18 to 18
<i>F</i> (000)	588.0
$R_{I}^{a} w R_{2}^{b} \left[I > 2\sigma(I) \right]$	0.0692, 0.1695
GOF on F^2	1.162
^{<i>a</i>} $R = \Sigma(Fo - Fc)/\Sigma Fo $. ^{<i>b</i>} $Rw = {\Sigma w$	$[(Fo^2 - Fc^2)^2]/\Sigma w[(Fo^2)^2]\}^{1/2}.$

Table S1. Crystallographic data and refinement details for HSB-W5d.

Table S2. Selected bond lengths (Å) and angles (°) of HSB-W5d.

Zn1-N1	2.233(3)
Zn1-N2	2.132(4)
Zn1-N4 ^a	2.265(3)
Zn1-O1	1.998(3)
Zn1-O3	2.071(3)
N1-Zn1-N4 ^a	170.20(12)
N2-Zn1-N1	82.08(12)
N2-Zn1-N4 ^a	90.76(12)
O1-Zn1-N1	98.37(12)
O1-Zn1-N2	116.52(13)
O1-Zn1-N4 ^a	90.81(11)
O1-Zn1-O3	101.95(13)
O3-Zn1-N1	94.02(11)
O3-Zn1-N2	141.51(14)
O3-Zn1-N4 ^a	87.41(11)

Symmetry codes: a) -1+X, +Y, +Z.

Figure S1. View of the coordination environment of Zn(II) ion in HSB-W5d (hydrogen atoms and free water molecules have been omitted for clarity).

HSB-W5d

L1	L2
-146.5	-146.5
-160.0	-160.0
60.1	60.1
97.9	97.9
57.7	57.7
78.2	78.2
174.0	174.0
	-146.5 -160.0 60.1 97.9 57.7 78.2 174.0

Dihedral Angle (°)	
I-II	16.0
III-IV	16.0
I-III	0
II-IV	0

HSB-W5e

Torsion Angles (°)	L1	L2
A-C-H-J	162.7	131.8
C-D-G-H	158.8	164.6
B-C-D-E	-39.7	-67.2
C-D-E-F	-104.2	-102.7
D-E-F-G	-57.4	-56.0
E-F-G-H	-94.7	-73.9
F-G-H-I	-169.9	-172.2

Dihedral Angle (°)	
I-II	24.0
III-IV	22.2
I-III	7.8
II-IV	14.0

Figure S2. Comparation of the conformation of neighboring hsb-2 ligands in HSB-W5d (a) and HSB-W5e (b).

Figure S3. PXRD patterns of simulated HSB-W5d, wet crystal HSB-W5d, assynthesized HSB-W5d (after drying), as-synthesized HSB-W5d immersing in the mother liquid, and simulated HSB-W5e.

Figure S4. PXRD patterns of HSB-W5 after immersing in water for one month.

Figure S5. The photographs of as-synthesized HSB-W5 under sunlight (a), $Tb(H_2O)_8^{3+}$ @HSB-W5 under sunlight (b), $Tb(H_2O)_8^{3+}$ @HSB-W5 irradiated by a standard 254 nm laboratory UV lamp (c), and $Eu(H_2O)_8^{3+}$ @HSB-W5 irradiated by a standard 254 nm laboratory UV lamp (d).

Figure S6. PXRD patterns of $Eu(H_2O)_8^{3+}$ @HSB-W5 and Tb $(H_2O)_8^{3+}$ @HSB-W5.

Figure S7. The photographs of crystals $Eu(H_2O)_8^{3+}$ @HSB-W5 and Tb(H_2O)_8^{3+}@HSB-W5, and their pieces irradiated by a standard 254 nm laboratory UV lamp.

Figure S8. PXRD patterns of $0.03 \text{Eu}(\text{H}_2\text{O})_8^{3+}/0.15 \text{Tb}(\text{H}_2\text{O})_8^{3+}$ @HSB-W5 composite.

Table S3. The amounts of Eu^{3+} in $Eu(H_2O)_8^{3+}$ @HSB-W5 composites based on ICP measurement.

Composite name	Initial concentration of	Amount of	Amount of
xEu(H ₂ O) ₈ ³⁺ @HSB-W5	Eu ³⁺ (mol L ⁻¹)	Zn^{2+} (%)	Eu ³⁺ (%)
0.08Eu(H ₂ O) ₈ ³⁺ @HSB-W5	0.009	9.55	1.70
0.13Eu(H ₂ O) ₈ ³⁺ @HSB-W5	0.018	9.76	2.91
0.24Eu(H ₂ O) ₈ ³⁺ @HSB-W5	0.027	9.41	5.21

Table S4. The amounts of Tb^{3+} in $Tb(H_2O)_8^{3+}$ @HSB-W5 composites based on ICP measurement.

Composite name	Initial concentration of	Amount of	Amount of
<i>x</i> Tb(H ₂ O) ₈ ³⁺ @HSB-W5	$Tb^{3+} (mol L^{-1})$	Zn^{2+} (%)	Tb ³⁺ (%)
0.04Tb(H ₂ O) ₈ ³⁺ @HSB-W5	0.002	9.97	1.04
0.08Tb(H ₂ O) ₈ ³⁺ @HSB-W5	0.007	9.80	1.87
0.15Tb(H ₂ O) ₈ ³⁺ @HSB-W5	0.014	9.71	3.48

Table S5. The amounts of Eu^{3+} and Tb^{3+} in WLE $Eu(H_2O)_8^{3+}/Tb(H_2O)_8^{3+}$ @HSB-W5 composites based on ICP measurement.

Composite name	Amount of	Amount of	Amount of
$x Eu(H_2O)_8^{3+}/y Tb(H_2O)_8^{3+}$ @HSB-W5	Zn^{2+} (%)	Eu ³⁺ (%)	Tb ³⁺ (%)
0.03Eu(H ₂ O) ₈ ³⁺ /0.15 Tb(H ₂ O) ₈ ³⁺ @HSB-W5	9.22	0.72	3.41

Figure S9. (a) SEM and (b) TEM images of the HSB-W5-NS nanosheets. (c, d) AFM images of the HSB-W5-NS nanosheets and the corresponding height profiles.

Figure S10. PXRD patterns of HSB-W5-NS after immersing in water for one month.

Figure S11. PXRD patterns of as-synthesized HSB-W5-NS (i), $x \text{Eu}(\text{H}_2\text{O})_8^{3+}$ @HSB-W5-NS (ii-v: x = 0.26-1.60), and $x \text{Tb}(\text{H}_2\text{O})_8^{3+}$ @HSB-W5-NS (vi-ix: x = 0.08-0.48).

Figure S12. Emission changes with the reaction time.

Figure S13. PXRD patterns of Eu(H₂O)₈³⁺/Tb(H₂O)₈³⁺@HSB-W5-NS composite.

Table S6. The amounts of Eu^{3+} in $Eu(H_2O)_8^{3+}$ @HSB-W5-NS composites based on ICP measurement.

Composite name	Initial concentration of	Amount of	Amount of
$x Eu(H_2O)_8^{3+}$ @HSB-W5-NS	Eu^{3+} (mol L ⁻¹)	Zn^{2+} (%)	Eu ³⁺ (%)
$0.26 \text{Eu}(\text{H}_2\text{O})_8^{3+}$ @HSB-W5-NS	0.001	9.52	5.80
$0.55 \text{Eu}(\text{H}_2\text{O})_8^{3+}$ @HSB-W5-NS	0.002	8.45	10.78
$1.24 \text{Eu}(\text{H}_2\text{O})_8^{3+}$ @HSB-W5-NS	0.003	6.15	17.76
$1.60 \text{Eu}(\text{H}_2\text{O})_8^{3+}$ @HSB-W5-NS	0.004	5.68	21.15

Table S7. The amounts of Tb^{3+} in $Tb(H_2O)_8^{3+}$ @HSB-W5-NS composites based on ICP measurement.

Composite name	Initial concentration of	Amount of	Amount of
xTb(H ₂ O) ₈ ³⁺ @HSB-W5-NS	Tb ³⁺ (mol L ⁻¹)	Zn^{2+} (%)	Tb ³⁺ (%)
0.08Tb(H ₂ O) ₈ ³⁺ @HSB-W5-NS	0.00055	12.80	2.51
0.13Tb(H ₂ O) ₈ ³⁺ @HSB-W5-NS	0.001	12.23	4.02
$0.21 \text{Tb}(\text{H}_2\text{O})_8^{3+}$ (2) HSB-W5-NS	0.0013	11.47	5.90
0.48Tb(H ₂ O) ₈ ³⁺ @HSB-W5-NS	0.0022	9.60	11.24

Table S8. The amounts of Eu^{3+} and Tb^{3+} in WLE $Eu(H_2O)_8^{3+}/Tb(H_2O)_8^{3+}$ @HSB-W5-NS composites based on ICP measurement.

Composite name	Amount of	Amount of	Amount of
$x Eu(H_2O)_8^{3+}/y Tb(H_2O)_8^{3+}$ @HSB-W5-NS	Zn^{2+} (%)	Eu ³⁺ (%)	Tb ³⁺ (%)
$0.04 \text{Eu}(\text{H}_2\text{O})_8^{3+}/0.22 \text{ Tb}(\text{H}_2\text{O})_8^{3+}@\text{HSB-}$	11.13	1.04	6.03
W5-NS			
$0.08 \text{Eu}(\text{H}_2\text{O})_8^{3+}/0.42 \text{ Tb}(\text{H}_2\text{O})_8^{3+}@\text{HSB-}$	9.52	1.76	9.75
W5-NS			

Figure S14. Comparation of the emission spectra of $0.04\text{Eu}(\text{H}_2\text{O})_8^{3+}/0.22\text{Tb}(\text{H}_2\text{O})_8^{3+}$ @HSB-W5-NS (fresh vs. after 140 days).

Figure S15. TEM image of $0.04\text{Eu}(\text{H}_2\text{O})_8^{3+}/0.22\text{Tb}(\text{H}_2\text{O})_8^{3+}$ @HSB-W5-NS (a) and corresponding EDX mapping image for C element (b).