Supplementary Information

Molecular spinterface in \mathbf{F}_{4} TCNQ-doped polymer spin valves

Dongxue Yu, ${ }^{a}$ Shuaishuai Ding, *a Jing Li, ${ }^{a}$ Wenbo Mi, ${ }^{b}$ Yuan Tian*c and Wenping Hu ${ }^{* a, d}$
a. Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, Tianjin 300072, China
b. Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China
c. School of Physics \& Electronics, Hunan University, Hunan 410082, China
d. Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China

Corresponding Author

*E-mail: dingshuaishuai@tju.edu.cn; ytian@hnu.edu.cn; huwp@tju.edu.cn

Fig. S1 Band alignment diagram of LSMO/P3HT/F4TCNQ/Co.

Fig. S2 Optical microscope image of F_{4} TCNQ-doped P3HT layer on LSMO/STO substrate. In the figure, the organic layer is relatively smooth, and the small granules are $\mathrm{F}_{4} \mathrm{TCNQ}$.

Fig. S3 MR curve of the LSMO/P3HT/Co/Au device before doping. The temperature was 2 K , and the input current was $0.03 \mu \mathrm{~A}$.

Fig. S4 AFM images of P3HT before and after F_{4} TCNQ doping. (a), (d) The morphology and thickness of the pristine P3HT layer on the bottom ITO electrode. (b), (e) The morphology and thickness of F_{4} TCNQ-doped P3HT on the bottom ITO electrode. (c), (f) The morphology and thickness of $\mathrm{F}_{4} \mathrm{TCNQ}$-doped P3HT on the bottom LSMO electrode.

Fig. S5 MR curves of the doped ITO/P3HT/F4TCNQ/Co/Au device at 5 K . Each measurement was conducted with different currents of (a) $0.01 \mu \mathrm{~A}$, (b) $0.02 \mu \mathrm{~A}$, (c) $0.03 \mu \mathrm{~A}$. and (d) 0.05 $\mu \mathrm{A}$.

Fig. S6 MR curves of the doped ITO/P3HT/F4TCNQ/Co/Au device with the input current of $0.01 \mu \mathrm{~A}$. Each measurement was conducted at different temperatures of (a) 2 K , (b) 10 K , (c) 20 K , and (d) 30 K .

