Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information for

Organic–Inorganic Hybrid Metallic Conductor Based on Bis(ethylenedithio)tetrathiafulvalene Cation and Antiferromagnetically Oxalate-Bridged Copper(II) Dinuclear Anion

Bin Zhang,^{*,a} Yan Zhang,^b Zheming Wang,^{*,c} Dongwei Wang,^d Deliang Yang,^e Zengqiang Gao,^f Guangcai Chang,^f Yanjun Guo,^d Takehiko Mori,^{*,g} Zhijuan Zhao,^e Fen Liu,^e Qiaolian Li,^e and Daoben Zhu^{*,a}

^aOrganic Solid Laboratory, BNLMS, CMS & Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, People's Republic of China. ^bInstitute of Condensed Matter and Material Physics, Department of Physics, Peking University, Beijing, 100871, People's Republic of China. ^cState Key Laboratory of Rare Earth Materials Chemistry and Applications, BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China. ^dCAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China. ^eCAS Research/Education Center for Excellence in Molecular Science, CMS & BNLMS, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China. ^fBSRF, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100047, People's Republic of China. ^gDepartment of Materials Science and Engineering, Tokyo Institute of Technology, O-Okayama, Tokyo 152-8552, Japan.

* To whom correspondence should be addressed. E-mail: <u>zhangbin@iccas.ac.cn</u>, <u>zmw@pku.edu.cn</u>, <u>mori_t_ae@m.titech.ac.jp</u>, <u>zhudb@iccas.ac.cn</u>

Contents

Table S1. Crystallographic data of β'' -(BEDT-TTF) ₃ [Cu ₂ (μ -C ₂ O ₄)(C ₂ O ₄) ₂ (CH ₃ OH)
(H ₂ O)] S3-S4
Table S2. Formal charges of the BEDT-TTF molecules assigned from bond length of
the TTF core at 180 and 290 K St
Table S3. Cu–O bond lengths (Å) in dinuclear anion at different temperatures.Set
Figure S1. Morphologies of the crystals Viewed with reflectance mode (top) an
transmission mode (bottom).
Figure S2. (a) Crystal structure of θ^{21} -(BEDT-TTF) ₃ [Cu ₂ (μ -C ₂ O ₄) ₃] 2CH ₃ OH without solvent molecules, viewed along the <i>a</i> axis; (b) Donor arrangement of θ^{21} -(BEDT-TTF) ₃ [Cu ₂ (μ -C ₂ O ₄) ₃] 2CH ₃ OH viewed along the <i>c</i> axis; (c) Donor arrangement of θ^{21} -(BETS) ₃ [Cu ₂ (μ -C ₂ O ₄) ₃] 2CH ₃ OH viewed along the <i>c</i> axis. Color code: Cu, cyan; O, red; S, yellow; Se, teal; C, grey H, dark grey; hydrogen bonds, blue dash lines; S ···S, S ···Se, and Se ···S contacts, blue solid lines. θ^{21} -(BEDT-TTF) ₃ [Cu ₂ (μ -C ₂ O ₄) ₃] 2CH ₃ OH an θ^{21} -(BETS) ₃ [Cu ₂ (μ -C ₂ O ₄) ₃] 2CH ₃ OH are isostructural.

Figure S3. ZFCM/FCM/RM of polycrystal under 100 Oe.S9

Figure S4. Specific heat measurement form 120 to 2 K under 0 T (black square) and 5 T (red circle).

Table S1 Crystallographic data of

Т, К	100	180	290	
Formula	C37H30Cu2O14S24	C37H30Cu2O14S24	C37H30Cu2O14S24	
Fw.	1595.13	1595.13	1595.13	
F(000)	806	806	806	
crystal system	triclinic	triclinic	triclinic	
space group	P 1	P 1	P 1	
<i>a</i> , Å	7.4803(3)	7.5040(3)	7.5382(2)	
b, Å	9.3547(3)	9.3956(4)	9.4785(2)	
<i>c</i> , Å	18.6711(7)	18.6999(7)	18.7231(4)	
<i>α</i> , °	95.797(3)	95.930(3)	96.049(2)	
β, °	90.974(3)	90.861(3)	90.732(2)	
γ, °	93.508(3)	93.745(4)	94.417(2)	
<i>V</i> , Å ³	1297.06(8)	1308.26(9)	1326.09(5)	
Ζ	1	1	1	
Dc, g/cm ³	2.042	2.025	1.997	
μ (Mo K _{α}), mm ⁻¹	1.852	1.837	1.812	
T_{\min} and T_{\max}	0.874,1.000	0.866, 1.000	0.880, 1.000	
$ heta_{\min}, heta_{\max} / ^{\circ}$	3.515, 27.868	3.531,27.876	3.565, 27.877	
No. total reflns.	28850	29907	29326	
No. uniq. reflns.	6139	6184	6285	
No. obs.[$I \ge 2(I_0)$]	5239	5095	4820	
No. params	359	359	359	
Restraints	5	5	5	
Complete,%	99.4	99.4	99.3	
R _s /R _{int}	0.0255/0.0281	0.0289/0.0311	0.0359/0.0381	
$R_1, wR_2[I \ge 2\sigma(I_0)]$	0.0539, 0.1595	0.0497, 0.1401	0.0488, 0.1277	
R_1, wR_2 (all data)	0.0630, 0.1652	0.0615, 0.1471	0.0674, 0.1386	
GOF	1.144	1.098	1.080	
$^{a}\Delta\rho, e/Å^{3}$	1.753, -1.537	1.534, -1.105 1.453, -0.685		
^b Max. and mean	0.001, 0.000	0.000, 0.000 0.001, 0.000		
Δ/σ				
CCDC	2019618	2019619	2019620	

β'' -(BEDT-TTF)₃[Cu₂(μ -C₂O₄)(C₂O₄)₂(CH₃OH)(H₂O)]

* The distance between O and C of methanol was restrained. The residue peaks higher than 1.0 e/Å^3 were near the Cu atom or S atoms.

* The distance between O and C of methanol was restrained.

* Due to the existence of the disordered CH_3 group of methanol, the anisotropical thermal factor of C19 is large and suggests to be splitted. We tried to split it into two positions, but the refinement result suggested the position to be splitted once more. So the ADP max/min ratio of C19 is 7.4, and the Ueq(max)/Ueq(min) range of it is 10.0.

* The O7 shared by H_2O amd CH_3OH is bonded to Cu with Cu-bond, so its thermos factor is lower than the disordered C19 connected with it.

* When all of reflections are used for least-squares refinement, there are residue peaks from difference Fourier near Cu, S atoms within 1 Å and the least-squares refinement is not convergent. After some disagreeable reflections with Error/esd higher than 6.4 were omitted, the least-squares refinement converges and the highest peak is reduced. The residue peaks higher than 1.0 e/Å^3 were near the Cu atom or S atoms.

	а	b	с	d	δ	Q
А	1.375(5)	1.730(3)	1.745(3)	1.359(4)	0.734	0.869
		1.730(2)	1.746(3)	1.366(4)		
		1.726(3)	1.739(3)	~1.363		
		1.731(3)	1.743(3)			
		~1.729	~1.743			
В	1.375(6)	1.728(3)	1.743(3)	1.360(4)	0.734	0.869
		1.726(3)	1.741(3)			
		~1.727	~1.742			
Total						2.6

180K

	а	b	с	d	δ	Q
А	1.372(5)	1.735(4)	1.749(4)	1.356(5)	0.747	0.772
		1.728(4)	1.748(4)	1.354(5)		
		1.730(4)	1.739(4)	~1.355		
		1.733(4)	1.732(4)			
		~1.732	~1.742			
В	1.375(7)	1.725(4)	1.744(4)	1.356(5)	0.745	0.787
		1.733(4)	1.750(3)			
		~1.729	~1.747			
Total						2.33

Т, К	100	180	290
Cu1-O1, Å	1.937	1.937	1.929
Cu1-O2, Å	1.930	1.931	1.923
Cu1-O5, Å	2.000	2.003	2.001
Cu1-O6, Å	2.001	2.003	2.000
Cu1-O7, Å	2.231	2.240	2.261

Figure S1. Morphologies of the crystals. Viewed with reflectance mode(top) and transmission mode (bottom).

Figure S2. (a) Crystal structure of θ^{21} -(BEDT-TTF)₃[Cu₂(μ -C₂O₄)₃] 2CH₃OH without solvent molecules, viewed along the *a* axis; (b) Donor arrangement of θ^{21} -(BEDT-TTF)₃[Cu₂(μ -C₂O₄)₃] 2CH₃OH viewed along the *c* axis; (c) Donor arrangement of θ^{21} -(BETS)₃[Cu₂(μ -C₂O₄)₃] 2CH₃OH viewed along the *c* axis. Color code: Cu, cyan; O, red; S, yellow; Se, teal; C, grey; H, dark grey; hydrogen bonds, blue dash lines; S \cdots S, S \cdots Se, and Se \cdots Se contacts, blue solid lines.

Figure S3. ZFCM/FCM/RM of polycrystal under 100 Oe.

Figure S4. Specific heat measurement form 120 to 2 K under 0 T (black square) and 5 T (red circle).