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Fabrication of 2DMCs and their heterojunction

The 2DMCs were grown as follows: (i) 25 mL water with 0.02 mg mL−1 C8F17KO3S 

was added into a weighing bottle (70 mm × 35 mm) as a liquid substrate for crystal 

growth. (ii) C6-DPA with a concentration of 0.2 mg mL−1 was dissolved in a low 

surface tension solution (e.g., toluene) and 60 μL of C6-DPA solution was slowly 

dropped on the surface of water (Fig. S1a and S1b, ESI†). C6-DPA 2DMCs obtained 

by solutions of different concentrations were shown in Fig. S2a-b (ESI†). (iii) After the 

solvent was completely evaporated, C6-DPA 2DMCs were obtained on the surface of 

water (Fig. S1c, ESI†). (iv) SiO2 (300 nm)/Si wafers were used as the substrates. They 

were cleaned by sonication in deionized water, acetone, and isopropanol for 10 min 

successively. Then the substrates were treated with oxygen plasma at 80 W for 10 min 

followed by immediately modification with octadecyltrichlorosilane (OTS) by a vapor 

phase method. (v) The as-grown C6-DPA 2DMCs were transferred to OTS-modified 

SiO2/Si substrates by immersing the substrate in water (Fig. S1d, ESI†). 

The bilayer heterojunctions based on C6-DPA and TFT-CN 2DMCs were 

constructed as follows: A toluene solution of TFT-CN with a concentration of 1 mg 

mL−1 was prepared and 60 μL of TFT-CN solution was slowly dropped on the surface 

of water with 0.02 mg mL−1 C8F17KO3S. After the solvent was completely evaporated, 

TFT-CN 2DMCs were obtained. The as-grown TFT-CN 2DMCs were transferred to 

the substrates pre-covered by C6-DPA 2DMCs to form the heterojunctions.

In addition, 2DMCs of various organic materials can also be transferred to OTS-

modified SiO2/Si substrates by immersing the substrate in water and fishing the crystals 

out (Fig. S6-S9, ESI†), so that many types of bilayer heterojunctions can be easily 

obtained by arbitrarily combination of 2DMCs through a layer-by-layer transfer method 

(Fig. S12 and S13, ESI†).

Calculation of the layer numbers of C6-DPA and TFT-CN

According to XRD patterns of C6-DPA (Fig. S10, ESI†), we can infer that the d-spacing 

is 3.2 nm, which coincides with the length of a C6-DPA molecule along the long axis.1 

A monolayer 2DMC of C6-DPA was about 2.9 nm measured by AFM.2 As a result, we 

calculated the layer number of C6-DPA as follows: n = (T-2.9)/3.2+1 (n was layer 



number, T was the thickness of C6-DPA obtained by AFM. As shown in Fig. 2b, the 

thickness of C6-DPA 2DMCs was 8.4 nm. By substituting the thickness of C6-DPA 

into the above formula, the number of layers was three. As for TFT-CN, according to 

the XRD (Fig. S11, ESI†) and the single crystal structure,3 a monolayer thickness was 

1.6 nm. As a result, we calculated the layer number of TFT-CN as follows: n = T/1.6 

(n was layer number, T was the thickness of TFT-CN obtained by AFM). Considering 

the possibility that the first monolayer may tilt in a bilayer film, we think a film with a 

thickness of 2.5 nm is bilayer.
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Fig. S1 Schematic illustration of the procedures for the preparation of 2DMCs by the 

STAS strategy. (a) A low surface tension solution was dropped on the water surface. 

(b) The solution spread on the water surface. (c) 2DMCs were produced on water 

surface after solvent evaporation. (d) Transfer of 2DMCs to a target substrate.



Fig.S2 OM images of C6-DPA 2DMCs obtained at (a-c) different concentrations and 

(d-f) temperatures. (a) At the low concentration of the organic semiconductor (0.05 mg 

mL−1), the crystals were discontinuous. (b) At medium concentration of 0.2 mg mL−1, 

uniform and flat 2DMCs could be obtained. (c) While thick and nonuniform crystals 

were produced at a high concentration. (d) At low growth temperature of 10℃, thick 

C6-DPA crystals appeared. (e) At temperature of 25℃, large-area high-quality C6-

DPA 2DMCs were obtained. (f) At high temperature of 50℃, the solvent volatilized 

quickly because of the water temperature was high, resulting in the formation of a large 

number of discontinuous crystals with uneven thickness. As a result, we used a medium 

concentration of 0.2 mg mL−1 C6-DPA solutuion and a medium growth temperature of 

25°C throughout this investigation (unless otherwise stated).



Fig. S3 Surface tension as a function of surfactant concentration. The drastic decrease 

of surface tension indicated that a surfactant molecular layer formed on water surface.

Fig. S4 The spreading of solutions with low surface tension. (a) Trichloromethane and 

(b) dichloromethane solution separated into small lenses on the pure water surface. In 

the STAS strategy, the droplet of (c) trichloromethane and (d) dichloromethane solution 

spread continuously on water surface with the help of the soft template formed by 

surfactant which was added in the water phase.



Fig. S5 The spreading of solutions with high surface tension. (a-c) The solution formed 

small and thick lenses on pure water surface. (d-f) OM images of the crystals grown on 

the corresponding conditions. (g-i) When surfactant was added into the water, the 

spreading area of the solution increased significantly, which was conducive to grow 

large-area 2DMCs. (j-l) OM images of the crystals grown on the corresponding 

conditions.



Fig. S6 (a and b) POM images, (c) AFM image and (d) XRD of TIPS-PEN 2DMCs.

Fig. S7 (a and b) POM images and (c) XRD of C8-BTBT 2DMCs.

Fig. S8 (a and b) POM images of C6-DPA 2DMCs.



Fig. S9 (a and b) POM images of TFT-CN 2DMCs.

Fig. S10 The XRD of C6-DPA 2DMCs.



Fig. S11 The XRD of TFT-CN 2DMCs.

Fig. S12 (a) OM, (b and c) POM images and (d) XRD of heterojunctions based on C8-

BTBT and TFT-CN 2DMCs.

Fig. S13 (a) OM, (b and c) POM images and (d) XRD of heterojunctions based on C6-

DPA and TIPS-PEN 2DMCs.



Fig. S14 (a) XRD and (b) fluorescence microscope image of p-n heterojunctions based 

on C6-DPA and TFT-CN 2DMCs.

Fig. S15 Schematic illustrations of (a) electron accumulation and (b) hole accumulation 

model of the aOFETs based on bilayer p–n heterojunctions.



Table S1. Performance comparison of our aOFETs with reported organic single-

crystalline aOFETs. 
p type

materials

n type

materials

p-n

morphologies
Atmosphere

Max µh

(cm2 V-1 s-1)

Max µe

(cm2 V-1 s-1)
Year Ref.

CuPc F16CuPc nanoribbons N2 0.07 0.05 2010 4

C8-BTBT C60 ribbons air 0.16 0.17 2013 5

TIPS-PEN PTCDI-C8 wire air 0.23 0.13 2014 6

DPP-PR C60 ribbons N2 0.0061 0.59 2015 7

C8-BTBT TFT-CN 2DMC air 0.43 0.11 2019 8

C6-DPA TFT-CN 2DMC air 0.87 0.82 2019 9

TIPS-BP TIPS-TAP ribbons N2 1.02 1.90 2019 10

C8-BTBT NDI-C6 2DMC vacuum 1.40 0.65 2020 11

C6-DPA TFT-CN 2DMC air 1.96 1.27 2021 12

C6-DPA NDI 2DMC air 0.54 0.5 2021 13

C6-DPA TFT-CN 2DMC air 1.50 0.79
This 

work
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