Electronic Supplementary Information

Samarium and manganese incorporation to improve color rendering of LuAG:Ce³⁺ phosphor ceramic for laser-driven lighting: Color-tunable and energy transfer study

Bingheng Sun^{a, b}, Benxue Jiang^{a*}, Long Zhang^{a*}

 ^{a.} Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800
^{b.} University of Chinese Academy of Sciences

* To whom correspondence should be addressed. E-mail: jiangsic@foxmail.com

Supplementary Information

The in-line transmission spectra and appearances of polished LuAG:0.04Sm³⁺ and LuAG:0.02Ce³⁺,0.04Sm³⁺ ceramics (1.0 mm thick) were shown in Fig. S3. These samples presented a transparent appearance, and the words behind them could be recognized by naked eyes under daylight. The in-line transmittance of LuAG:0.02Ce³⁺,0.04Sm³⁺ ceramic reached 83.3% at 800 nm, which was higher than that of LuAG:0.04Sm³⁺ ceramic (73.8% at 800 nm). This result implies appropriate rare earth or transition ions doping is in favor of promoting densification process in sintering stage, thus improving optical quality of LuAG:0.02Ce³⁺,0.04Sm³⁺ ceramic. Similar phenomenon has been reported in other literatures.^{1, 2} In addition, two broad absorption band located at 340 and 445 nm were originated from 4f-5d¹ and 4f-5d² transition of Ce³⁺ in LuAG:0.02Ce³⁺,0.04Sm³⁺ ceramic, respectively. Although most of the intrinsic absorption bands of Sm³⁺ were covered by those of Ce³⁺, while an absorption centered at 377 nm could also be observed in Ce³⁺, Sm³⁺ co-doped samples, corresponding to the ⁶H_{5/2}-⁶P_{7/2}, transition of Sm³⁺ ion.

Supplementary Figures

Single structured phosphor ceramic

on different design strategies

Fig. S2 Evolution of lattice volume depending on the Sm

concentration

Fig. S3 In-line transmittance of as-prepared LuAG:0.04Sm³⁺ and

LuAG:0.02Ce3+,0.04Sm³⁺ ceramics

Fig. S4 Excitation-wavelength-dependent emission mappings for

representative LuAG:0.02Ce³⁺,0.04Sm³⁺ ceramics.

Fig. S5 Excitation-wavelength-dependent emission mappings for

representative LuAG:0.02Ce³⁺,0.04Sm³⁺ ceramics.

Fig. S6 (A) Temperature-dependent PL spectrum of

YAG:0.02Ce³⁺,0.04Sm³⁺ ceramics. Trend of the integral intensity of (B)

the whole spectra with the same temperature range.

Fig. S7 In-line transmittance and appearance of as-prepared

LuAG:0.02Ce³⁺,0.04Sm⁴⁺,0.04Mn²⁺ ceramic

Fig. S8 PLE spectrum (curve a, λ_{em} =618 nm) of LuAG:0.04Sm³⁺

ceramics and PL spectrum of LuAG:0.02Ce³⁺ (curve b, λ_{ex} =450 nm) and

LuAG:0.04Mn²⁺ (curve c, λ_{ex} =450 nm) ceramics.

Supplementary References

- 1. H. Guo, X. Mao, J. Zhang, R. Tian and S. Wang, *Ceramics International*, 2019, **45**, 5080-5086.
- C. Chen, X. Li, Y. Feng, H. Lin, X. Yi, Y. Tang, S. Zhang and S. Zhou, *Journal of Materials Science*, 2015, 50, 2517-2521.