Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Compositional Engineering of Metal-Xanthate Precursors toward (Bi_{1-x}Sb_x)₂S₃ (0≤x≤0.05) Films with Enhanced Room-Temperature Thermoelectric Performance

Zhenyu-Hu^{1,2,3}, Longhui-Deng^{2,3}, Tingjun-Wu³, Jing Wang⁴, Feiyan-Wu⁴, Lie Chen⁴, Qikai-Li,⁵ Weishu-Liu⁵, Shui-Yang Lien⁶, Peng Gao^{2,3*}

1. College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China

 CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China

3. Xiamen Institute of Rare Earth Materials, Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Chinese Academy of Sciences, Xiamen 361021, China

 College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.

5. Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

 School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China

*Corresponding author. E-mail address: peng.gao@fjirsm.ac.cn

Figure. S1 A and B are the ¹H NMR spectrum of $Bi(S_2COEt)_3$ and $Sb(S_2COEt)_3$ in CDCl₃.

Figure. S2 XRD pattern of Bi_2S_3 thin films annealing at 220 °C, 240 °C, 260 °C, 280 °C, 300 °C.

Figure. S3 Temperature dependence of Tauc plot spectrums for Bi_2S_3 thin films.

Figure. S4 XPS survey spectrum of a pristine Bi_2S_3 film annealed at 300 °C.

Figure. S5 XRD pattern of $(Bi_{1-x}Sb_x)_2S_3$ ($0 \le x \le 0.05$) films annealed at 300 °C

Figure. S6 Energy Dispersive Spectrometer (EDX) elemental mapping (10 kV) of Bi M α , Sb L α and S K α for (Bi_{1-x}Sb_x)₂S₃ samples. (A) x = 0.01, (B) x =0.02, (C) x = 0.03, (D) x = 0.04 and (E) x=0.05 mole fractions of antimony.

Figure. S7 Absorption spectra of $(Bi_{1-x}Sb_x)_2S_3$ (0.01 $\leq x \leq 0.05$).

Figure. S8 Tauc plot for the $(Bi_{1-x}Sb_x)_2S_3$ (0.01 $\le x \le 0.05$)

Fig. S9 Variation of the band gap for $(Bi_{1-x}Sb_x)_2S_3$ (0.01 $\le x \le 0.05$) samples as a function of mole fraction (x) of Sb.

Figure. S10 Schematic of home-made for Seebeck coefficient measurement; above is the positive view, below is top view.

Concentration (mol L ⁻¹)	Thickness (nm)
0.15	117.4
0.2	160.6
0.25	196.9
0.3	260.9

Table S1 The thickness of Bi₂S₃ film measured by surface stylus profiler.

Table S2 The lattice parameter of *a*-, *b*- and *c* axis and crystalline analysis about $(Bi_{1-x}Sb_x)_2S_3$ ($0 \le x \le 0.05$) solid solution series.

		(=	_ /				
		Sb mole fraction (x)					
		0	0.01	0.02	0.03	0.04	0.05
Lattice axis (Å)	а	11.1500	11.1533	11.1566	11.1589	11.1612	11.1639
	b	11.3489	11.3566	11.3697	11.3770	11.3849	11.3931
	С	3.9724	3.9626	3.9567	3.9483	3.9390	3.9317
Crystalline analysis	$V(nm^3)$	502.664	501.917	501.896	501.256	500.525	500.079
	<i>D</i> (nm)	96.8762	78.9706	64.4241	45.9183	38.4402	36.3471
	δ (×10 ¹⁴ nm ⁻²)	1.0655	1.6035	2.4094	4.7427	6.7675	7.5694
	N (×10 ¹⁶ nm ⁻²)	1.5983	2.4053	3.6141	7.1141	10.1513	11.3541

#Note: XRD calculation of (Bi_{1-x}Sb_x)₂S₃ (0≤x≤0.05) films

(1). The volume of the cell was estimated using the equation

$$V = abc$$

(2). The crystallite size was decided using Scherrer equation

$$D = \frac{K\gamma}{B\cos\theta}$$

K=0.89 is Scherrer's constant; *B* is the FWHM of the diffraction peak of the measured

sample; θ is Bragg diffraction angle; γ is wavelength of X-ray, generally 1.5406 Å.

(3) Dislocation density of thin films can be determined using the equation 1

$$\delta = 1/D^2$$

(4) Number of crystallites/unit area can be obtained using relationship ² $N = t/D^3$

t is the thickness of thin films.

Annealing temperature (°C)	Sample (#)	$n (\times 10^{19} \text{cm}^{-3})$	Mean/ variance	$\mu ({\rm cm}^2{ m V}^{-1}{ m s}^{-1})$	Mean/ variance	$\sigma_{ m h}{}^{a}({ m S}{ m cm}^{-1})$	Mean/ variance
	#1	2.215	2 201/	1.204		4.273	
	#2	2.193		1.235	1.184 /0.069	4.339	1 2 4 0 /
220	#3	2.510	2.291/	1.069		4.297	4.340/
	#4	2.301	0.128	1.238		4.564	0.131
	#5	2.238		1.179		4.228	
	#1	1.455		2.907		6.777	
	#2	1.503	1 462/	2.867	2 000/	6.904	6 708/
240	#3	1.402	0.045	3.045	0.108	6.840	0.285
	#4	1.442	0.043	2.746		6.344	
	#5	1.513		2.939		7.124	
	#1	0.807	0.885/	7.445		9.626	10.353/ 0.940
	#2	1.010		7.195	7.297/ 0.142	11.643	
260	#3	0.912	0.083	7.328		10.708	
	#4	0.813	0.005	7.110		9.261	
	#5	0.887		7.409		10.529	
	#1	0.781	0.770	11.271	11.4/ 0.094	14.103	
	#2	0.785		11.391		14.326	14 227/
280	#3	0.753	/0.023	11.399		13.752	0.405
	#4	0.813	70.023	11.403		14.853	0.405
	#5	0.763		11.536		14.102	
300	#1	0.198		45.268		14.360	
	#2	0.207	0.196/	45.019	15 576/	14.930	1/ 305/
	#3	0.189	0.190/	45.951	43.370/ 0.546	13.914	0.522
	#4	0.202	0.010	45.308	0.340	14.663	0.322
	#5	0.184		46.336		13.659	

 Table. S3 Annealing temperature dependences of the carrier transport properties of Bi₂S₃ thin

 films, 5 samples were collected for each variable

^{*a*} The electrical conductivity (σ_h) calculated by $\sigma = ne\mu$.

^{*b*} The electrical conductivity ($\sigma_{\rm f}$) measured with a four-point probe technique.

minis, 5 samples are concered for each variable.								
Concentration (mol L ⁻¹)	Sample (#)	$n (\times 10^{19} \text{cm}^{-3})$	Mean/ variance	$\mu ({\rm cm}^2{\rm V}^{-1}{\rm s}^{-1})$	Mean/ variance	$\sigma_{ m h}{}^a(m Scm^{-1})$	Mean/ variance	
	#1	0.197	0.1918/	8.837		2.789	2.712/ 0.080	
	#2	0.195		8.490	8.839/ 0.506	2.653		
0.15	#3	0.189		8.755		2.651		
	#4	0.197	0.000	8.424		2.659		
	#5	0.181		9.691		2.810		
	#1	0.443		13.90		9.868	9.708/ 0.967	
	#2	0.332	0.428/ 0.061	15.298	14.239/ 0.873	8.137		
0.2	#3	0.431		14.970		10.337		
	#4	0.434		13.772		9.576		
	#5	0.502		13.207		10.622		
	#1	1.036	0.958/ 0.077	5.041	5.075/ 0.10	8.367	7.793/ 0.671	
	#2	0.847		4.940		6.703		
0.25	#3	0.929		5.154		7.671		
	#4	0.951		5.205		7.930		
	#5	1.028		5.037		8.296		
0.3	#1	1.265		3.299		6.686	(051/	
	#2	1.372	1.328/ 0.068	3.488	2 2 (0)	7.667		
	#3	1.308		1.328/	3.254	3.200/	6.819	0.931/
	#4	1.425		2.970	0.189	6.780	0.403	
	#5	1.273		3.337		6.806		

Table. S4 Concentration of precursor dependences of the carrier transport properties of Bi₂S₃ thin films, 5 samples are collected for each variable.

^{*a*} The electrical conductivity (σ_h) calculated by $\sigma = ne\mu$.

^{*b*} The electrical conductivity ($\sigma_{\rm f}$) measured with a four-point probe technique.

Sb mole	Sample	$n (\times 10^{19} \text{cm}^{-3})$	Mean/	$\mu ({\rm cm}^2{\rm V}^{-1}{\rm s}^{-1})$	Mean/	$\sigma_{\rm h}{}^a$ (S cm ⁻¹)	Mean/	
Iraction	(#)	· · · · ·	variance	, , ,	variance	- 、 /	variance	
	#1	0.250	0.247/ 0.019	6.531		2.616		
	#2	0.216		6.088	6.461/ 0.291	2.107	2 566/	
0.01	#3	0.247		6.664		2.637	2.300/	
	#4	0.270		6.785		2.935	0.298	
	#5	0.254		6.241		2.540		
	#1	0.279		9.188		4.107		
	#2	0.326	0.271/	8.844	9.56/ 0.633	4.619	4 120/	
0.02	#3	0.204	0.2/1/	10.366		3.388	4.130/ 0.455	
	#4	0.265	0.044	10.067		4.274		
	#5	0.285		9.341		4.265		
-	#1	0.378	0.280/	14.450	14.409/ 0.474	8.751	8.776/ 0.118	
	#2	0.384		14.390		8.853		
0.03	#3	0.362	0.380/	14.989		8.693		
	#4	0.371	0.017	14.545		8.646		
	#5	0.408		13.671		8.937		
	#1	0.541	0.514/	3.260	3.364/ 0.260	2.826	2.764/	
	#2	0.478		3.805		2.914		
0.04	#3	0.502		3.120		2.510		
	#4	0.496	0.031	3.356		2.667	0.173	
	#5	0.553		3.280		2.906		
0.05	#1	1.851		0.714	0.745/	2.117	2 107/	
	#2	1.690	1.831/ 0.105	0.779		2.108		
	#3	1.773		1.831/	0.716	0./45/	2.034	2.18//
	#4	1.967		0.798	0.039	2.516	0.189	
	#5	1.875		0.720		2.163		

Table S5 Sb mole fraction dependences of the carrier transport properties of Bi₂S₃ thin films, 5 samples are collected for each variable.

^{*a*} The electrical conductivity ($\sigma_{\rm h}$) calculated by $\sigma = ne\mu$.

^{*b*} The electrical conductivity ($\sigma_{\rm f}$) measured with a four-point probe technique.

Method	Sample	σ (S·cm ⁻¹)	Seebeck ($\mu V \cdot K^{-1}$)	PF (μ W·m ⁻¹ ·K ²)	Ref.
Spin-coating and annealing	Bi ₂ S ₃ films	10.32	-388.33	155.63	This work
Melting and Spark plasma sintering (SPS)	Bi ₂ S ₃ bulk	4	-352	49.56	3
Nanocomposite pellet	Bi ₂ S ₃ @Bi bulk	39.65	-97.38	37.66	4
SPS	Bi ₂ S ₃ @Bi bulk	38.89	~-150	~87.50	5
Melting and SPS	$(\mathrm{Bi}_{0.2}\mathrm{Sb}_{0.8})_2\mathrm{S}_3$ bulk	2.52×10 ⁻³	~-450	~0.05	6
Electron Beam and Spin-coating	Bi ₂ S ₃ films	6.0	-21.41	0.28	7
Wet chemical synthesis	Bi ₂ S ₃ films	5×10-3	~-650	0.02	8
Chemical Bath Deposition	Bi ₂ S ₃ films	50	-755	2850	9
Melting-SPS	Sb ₂ Se ₃ whisker	~1	~-200	~2	10
SPS	Bi _{1.995} Cu _{0.005} S ₃ bulk	14.41	~-275	~108.97	11

References

- 1 P. A. Chate and V. D. Bhabad, Int. J. Mod. Trends Sci. Technol., 2016, 2, 6–11.
- M. Dhanam, R. R. Prabhu and P. K. Manoj, *Mater. Chem. Phys.*, 2008, 107, 289–296.
- K. Biswas, L.-D. Zhao and M. G. Kanatzidis, *Adv. Energy Mater.*, 2012, 2, 634–638.
- Tarachand, G. S. Okram, B. K. De, S. Dam, S. Hussain, V. Sathe, U.
 Deshpande, A. Lakhani and Y. K. Kuo, *ACS Appl. Mater. Interfaces*, 2020, 12, 37248–37257.
- 5 Z. H. Ge, P. Qin, D. He, X. Chong, D. Feng, Y. H. Ji, J. Feng and J. He, ACS Appl. Mater. Interfaces, 2017, 9, 4828–4834.
- 6 Y. Kawamoto and H. Iwasaki, J. Electron. Mater., 2014, 43, 1475–1479.
- J. Recatala-Gomez, H. K. Ng, P. Kumar, A. Suwardi, M. Zheng, M. Asbahi, S.
 Tripathy, I. Nandhakumar, M. S. M. Saifullah and K. Hippalgaonkar, ACS Appl.
 Mater. Interfaces, 2020, 12, 33647–33655.
- N. P. Klochko, V. R. Kopach, I. I. Tyukhov, G. S. Khrypunov, V. E. Korsun, V.
 O. Nikitin, V. M. Lyubov, M. V. Kirichenko, O. N. Otchenashko, D. O.
 Zhadan, M. O. Maslak and A. L. Khrypunova, *Sol. Energy*, 2017, 157, 657–666.
- S.-C. Liufu, L.-D. Chen, Q. Yao and C.-F. Wang, *Appl. Phys. Lett.*, 2007, 90, 112106.
- H. J. Wu, P. C. Lee, F. Y. Chiu, S. W. Chen and Y. Y. Chen, *J. Mater. Chem. C*, 2015, 3, 10488–10493.
- Z. H. Ge, B. P. Zhang, Y. Liu and J. F. Li, *Phys. Chem. Chem. Phys.*, 2012, 14, 4475–4481.