Supporting Information

Nucleation-Controlled Growth of Ultra-Small Perovskite Quantum Dots for Bright Blue Light-Emitting Diodes

Shuhua Tu,^a Min Chen,^a and Limin Wu*^a

^a Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200433, (P.R. China)

*E-mail: lmw@fudan.edu.cn

Figure S1 (a) The photograph of PbBr₂, OA and ODE after heating and cooling down to room temperature, (b) the photograph of PbBr₂, OAm and ODE after heating and cooling down to room temperature.

Figure S2 (a) The energy dispersive X-ray (EDX) scan of $PbBr_2$ clusters and its elemental contents, (b) the EDX spectrum of CsPbBr₃ QDs and its elemental contents.

Figure S3 (a) The schematic illustration of CsPbBr₃ QDs and the crystal structure of typical cubic perovskite. High resolution XPS spectra of (b) Pb4f and (c) Br3d of PbBr₂ clusters. High resolution XPS spectra of (d) Cs3d, (e) Pb4f, (f) Br3d of CsPbBr₃ QDs.

Figure S4 The TEM images of CsPbBr₃ QDs prepared with Cs : Pb molar ratio of (a) 3.75%, (b) 7.5%, and (c) 22.5%.

Figure S5 The PL QY spectra of CsPbBr₃ QDs synthesized with different molar ratio of Cs to Pb (0.750%, 3.75%, 7.50%, 15.0%, 22.5%).

Figure S6 The CIE chromaticity coordinate of the blue LED made with CsPbBr₃ QDs/FSiO₂ particles.

Table S1. The emission peaks, size and PL QYs of various blue perovskite quantumdots and nanosheets.

	Emission		PL QYs		References
Composition	peaks (nm)	Size (nm)	(%)	Purification methods	
CsPbCl ₃	405	~11.0	10.0	precipitation, wash	[1]
CsPbCl _{1.5} Br _{1.5}	455	~11.0	37.0	precipitation, wash	[1]
CsPbClBr ₂	478	~11.0	70.0	precipitation, wash	[1]
CsPbClBr ₂	470	N/A	~60.0	N/A	[2]
CsPbCl ₂ Br	~435	~14.0	22.0	centrifugation, redispersed	[3]
				by sonication	
CsPbBr ₃	457	3.1	40.3	N/A	[4]
CsPbBr ₃	465	3.5	51.7	N/A	[4]
CsPbBr ₃	474	4.1	69.5	N/A	[4]
CsPbBr ₃	458	~7.0	97.0	centrifugation, redispersed	[5]
CsPbBr ₃	453	2.4	50.4	N/A	[6]
Al:CsPbBr ₃	456	10.5	42.0	centrifugation	[7]
$Cs_3Cu_2I_5$	440	N/A	58.0	filtration	[8]
MAPbCl ₃	407	~6.0		centrifugation	[9]
MAPbBr ₃	475	1.8	74.0	centrifugation	[10]
MAPbBr ₃	~465	3.3	1.2	N/A	[11]
FAPbCl ₃	415	22.0	< 1.0	centrifugation	[12]
FAPbCl _{1.5} Br _{1.5}	~478		21.0	centrifugation	[12]
CsPbBr ₃	471	3.8	64.8	no need	this work

Table S2. The maximum absorption transition peaks, emission peaks, FWHMs, PL

Temperature	Absorption	Emission			
(°C)	(nm)	(nm)	FWHM (nm)	PL QY (%)	
30	446	463	18	26.05	
50	448	466	19	29.06	
70	450	471	26	64.84	
90	455	477	28	51.87	
110	463	497	29	19.56	
30 50 70 90 110	446 448 450 455 463	463 466 471 477 497	18 19 26 28 29	26.05 29.06 64.84 51.87 19.56	

QYs and PL lifetime of CsPbBr₃ QDs synthesized under different temperature with 0.2 mL Cs-oleate.

Table S3. The PL emission peaks and FWHM of the mixture solution of blue CsPbBr₃ QDs and green CsPbBr₃ QDs synthesized by hot injection at 0, 10, 20, 30, 40 min.

N/A	Emission (nm)	FWHM (nm)	
Blue CsPbBr ₃ QDs	467	21	
Green CsPbBr ₃ QDs	510	18	
(hot injection)	510		
0 min	468, 507	21	
10 min	468, 507	21	
20 min	468, 507	21	
30 min	468, 507	21	
40 min	468, 507	21	

References

1 X. M. Li, Y. Wu, S. L. Zhang, B. Cai, Y. Gu, J. Z. Song, H. B. Zeng, Adv. Funct.

Mater., 2016, 26, 2435-2445.

- C. H. Wang, D. B. Han, J. H. Wang, Y. G. Yang, X. Y. Liu, S. Huang, X. Zhang,
 S. Chang, K. F. Wu, H. Z. Zhong, *Nat. Commun.*, 2020, **11**, 1-8.
- Y. Tong, E. Bladt, M. F. Ayguler, A. Manzi, K. Z. Milowska, V. A. Hintermayr,
 P. Docampo, S. Bals, A. S. Urban, L. Polavarapu, J. Feldmann, *Angew. Chem., Int. Edit.*, 2016, 55, 13887-13892.
- 4 S. B. Sun, D. Yuan, Y. Xu, A. F. Wang, Z. T. Deng, *ACS Nano*, 2016, **10**, 3648-3657.
- 5 C. H. Bi, Z. W. Yao, X. J. Sun, X. C. Wei, J. X. Wang and J. J. Tian, *Adv. Mater.*, 2021, 33, 2006722.
- 6 Z. Q. Liang, S. L. Zhao, Z. Xu, B. Qiao, P. J. Song, D. Gao, X. R. Xu, ACS Appl.
 Mater. Inter., 2016, 8, 28824-28830.
- M. Liu, G. H. Zhong, Y. M. Yin, J. S. Miao, K. Li, C. Q. Wang, X. R. Xu, C.
 Shen, H. Meng, *Adv. Sci.*, 2017, 4, 1700335.
- X. Y. Liu, Y. Yu, F. Yuan, C. J. Zhao, H. Dong, B. Jiao, Z. X. Wu, ACS Appl.
 Mater. Inter., 2020, 12, 52967-52975.
- 9 F. Zhang, H. Z. Zhong, C. Chen, X. G. Wu, X. M. Hu, H. L. Huang, J. B. Han, B.
 S. Zou, Y. P. Dong, *ACS Nano*, 2015, 9, 4533-4542.
- 10 H. Huang, A. S. Susha, S. V. Kershaw, T. F. Hung, A. L. Rogach, *Adv. Sci.*, 2015,2, 1500194.
- 11 V. Malgras, S. Tominaka, J. W. Ryan, J. Henzie, T. Takei, K. Ohara, Y. Yamauchi, *J. Am. Chem. Soc.*, 2016, **138**, 13874-13881.
- 12 I. Levchuk, A. Osvet, X. F. Tang, M. Brandl, J. D. Perea, F. Hoegl, G. J. Matt, R. Hock, M. Batentschuk, C. J. Brabec, *Nano Lett.*, 2017, 17, 2765-2770.