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Synthesis of 4-(pyridin-2-yl)benzaldehyde

(4-formylphenyl)boronic acid (1.74 g, 11.6 mmol) and K>COs (4.26 g, 30.8 mmol)
were dispersed in the mixture solvent of 60.0 mL of 1,4-dioxane and 15.0 mL of
water. The solution was stirred at room temperature and bubbled with nitrogen for 30
min. Then 2-bromopyridine (735 uL, 1.22 g, 7.71 mmol) and Pd(PPh3)s (0.45 g, 0.39
mmol) were added. The mixture was heated to reflux. After 9 hours, the reaction
mixture was cooled to room temperature and solvent was removed on a rotary
evaporator. The residue was poured into saturated salt water and extracted with ethyl
acetate. The organic layer was dried over MgSQs4. After filtration and solvent
evaporation, the crude product was purified by silica-gel chromatography using ethyl
acetate/hexane mixture (1:2, v/v) as eluent to obtain 4-(pyridin-2-yl)benzaldehyde
(1.20 g, yield 81%)).

"H-NMR (500 MHz, CDC]l3) 8/ppm = 10.09 (s, 1H), 8.75 (d, J = 4.7 Hz, 1H), 8.18 (d,
J=28.1Hz, 2H), 8.00 (d, /= 8.1 Hz, 2H), 7.82 (d, /= 3.7 Hz, 2H), 7.38-7.28 (m, 1H).

Synthesis of 4-(pyridin-3-yl)benzaldehyde

4-bromobenzaldehyde (1.50 g, 8.10 mmol), pyridin-3-ylboronic acid (1.20 g, 9.76
mmol) and K>COs (4.26 g, 30.8 mmol) were dispersed in the mixture solvent of 40.0
mL of toluene, 15.0 mL of isopropanol and 15.0 mL of water. The solution was
stirred at room temperature and bubbled with nitrogen for 30 min. Then Pd(PPhs)4
(0.45 g, 0.39 mmol) was added. The mixture was heated to reflux. After 9 hours, the
reaction mixture was cooled to room temperature and solvent was removed on a
rotary evaporator. The residue was poured into saturated salt water and extracted with
ethyl acetate. The organic layer was dried over MgSQO4. After filtration and solvent
evaporation, the crude product was purified by silica-gel chromatography using
CHCly/hexane mixture (2:1, v/v) as eluent to obtain 4-(pyridin-3-yl)benzaldehyde
(0.83 g, yield 56%).

"H-NMR (500 MHz, CDCl3) 8/ppm = 10.09 (s, 1H), 8.91 (d, J = 1.7 Hz, 1H), 8.67 (d,
J=4.5Hz, 1H), 8.01 (d, J= 8.1 Hz, 2H), 7.94 (d, /= 7.9 Hz, 1H), 7.77 (d, J = 8.1 Hz,
2H), 7.43 (dd, J= 7.8, 4.8 Hz, 1H).
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Synthesis of 4-(pyridin-4-yl)benzaldehyde

(4-formylphenyl)boronic acid (1.50 g, 7.71 mmol), 4-bromopyridine hydrochloride
(1.74 g, 11.6 mmol) and K>COs (4.26 g, 30.8 mmol) were dispersed in the mixture
solvent of 60.0 mL of 1,4-dioxane and 15.0 mL of water. The solution was stirred at
room temperature and bubbled with nitrogen for 30 min. Then Pd(PPhs)4 (0.45 g, 0.39
mmol) was added. The mixture was heated to reflux. After 9 hours, the reaction
mixture was cooled to room temperature and solvent was removed on a rotary
evaporator. The residue was poured into saturated salt water and extracted with
CH:Clo. The organic layer was dried over MgSQO4. After filtration and solvent
evaporation, the crude product was purified by silica-gel chromatography using ethyl
acetate/hexane mixture (2:1, v/v) as eluent to obtain 4-(pyridin-4-yl)benzaldehyde
(1.36 g, yield 92%)).

"H-NMR (500 MHz, CDCl3) &/ppm = 10.10 (s, 1H), 8.73 (dd, J = 4.6, 1.5 Hz, 2H),
8.01 (d, J= 8.2 Hz, 2H), 7.81 (d, J = 8.2 Hz, 2H), 7.55 (dd, J = 4.6, 1.5 Hz, 2H).

Synthesis of 10
(Z2)-2-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(pyridin-2-yl)-phenyl)acrylonitrile

2-(3,5-bis(trifluoromethyl)phenyl)acetonitrile (0.55 mL, 0.76 g, 3.0 mmol) and
4-(pyridin-2-yl)benzaldehyde (0.55 g, 3.0 mmol) were dissolved in 15.0 mL of 20
mM CH3ONa/CH30H. The mixture was stirred at room temperature for two days.
After that, the precipitate was filtered and washed several times with methanol and
water, respectively. The product was obtained (1.03 g, yield 82%).

"H-NMR (500 MHz, CDCls) 8/ppm = 8.75 (d, J = 4.7 Hz, 1H), 8.18 (d, J = 8.3 Hz,
2H), 8.13 (s, 2H), 8.08 (d, J = 8.4 Hz, 2H), 7.92 (s, 1H), 7.83 (d, /= 3.8 Hz, 2H), 7.71
(s, 1H), 7.32 (q, J = 4.7 Hz, 1H). 3C-NMR (126 MHz, CDCIl3) 8/ppm = 155.89,
150.06, 144.92, 142.40, 137.16, 136.92, 133.20, 132.88 (q, J = 33.80 Hz), 130.36,
127.68, 126.15, 123.12, 123.09 (q, J = 273.58 Hz), 122.83, 120.99, 117.14 and 109.07.
Anal. Calc. for C2H12FsN2: C, 63.16; H, 2.89; N, 6.70. Found: C, 63.73; H, 2.74; N,
6.66. MS: m/z =418.36.
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Synthesis of 1M
(Z2)-2-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(pyridin-3-yl)-phenyl)acrylonitrile

2-(3,5-bis(trifluoromethyl)phenyl)acetonitrile (0.55 mL, 0.76 g, 3.0 mmol) and
4-(pyridin-3-yl)benzaldehyde (0.55 g, 3.0 mmol) were dissolved in 15.0 mL of 20
mM CH3ONa/CH30H. The mixture was stirred at room temperature for two days.
After that, the precipitate was filtered and washed several times with methanol and
water, respectively. The product was obtained (1.13 g, yield 90%).

"H-NMR (500 MHz, CDCls) 6/ppm = 8.91 (d, J = 1.8 Hz, 1H), 8.65 (dd, J=4.8, 1.6
Hz, 1H), 8.12 (s, 2H), 8.07 (d, J = 8.3 Hz, 2H), 7.98-7.93 (m, 1H), 7.92 (s, 1H), 7.74
(d, J = 8.4 Hz, 2H), 7.71 (s, 1H), 7.45-7.36 (m, 1H). *C-NMR (126 MHz, CDCl;)
O/ppm = 149.47, 148.33, 144.61, 141.08, 136.77, 135.33, 134.51, 132.92 (q, J = 33.86
Hz), 132.55, 130.60, 127.90, 126.16, 123.89, 123.06 (q, J = 273.52 Hz), 122.93,
117.08 and 109.36. Anal. Calc. for Co2Hi2FsN2: C, 63.16; H, 2.89; N, 6.70. Found: C,
63.98; H, 2.66; N, 6.74. MS: m/z = 418.36.

Synthesis of 1P
(Z2)-2-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(pyridin-4-yl)-phenyl)acrylonitrile

2-(3,5-bis(trifluoromethyl)phenyl)acetonitrile (0.55 mL, 0.76 g, 3.0 mmol) and
4-(pyridin-4-yl)benzaldehyde (0.55 g, 3.0 mmol) were dissolved in 15.0 mL of 20
mM CH3ONa/CH30H. The mixture was stirred at room temperature for two days.
After that, the precipitate was filtered and washed several times with methanol and
water, respectively. The product was obtained (1.07 g, yield 85%).

"H-NMR (500 MHz, CDCl3) 8/ppm = 8.72 (d, J = 5.6 Hz, 2H), 8.12 (s, 2H), 8.08 (d, J
= 8.2 Hz, 2H), 7.92 (s, 1H), 7.79 (d, J = 8.3 Hz, 2H), 7.71 (s, 1H), 7.56 (d, J = 5.7 Hz,
2H). BC-NMR (126 MHz, CDCI3) &/ppm = 150.56, 147.00, 144.41, 141.22, 136.67,
133.45, 132.96 (q, J = 33.97 Hz), 130.58, 127.89, 126.22, 123.05, 123.05 (q, J =
273.46 Hz), 121.64, 116.98 and 109.86. Anal. Calc. for C22H12FsN2: C, 63.16; H, 2.89;
N, 6.70. Found: C, 63.76; H, 2.96; N, 6.67. MS: m/z = 418.34.
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Fig. S1 'H-NMR spectrum of 10 (14 mM) in CDCls.
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Fig. S3 '"H-NMR spectrum of 1M (98 mM) in CDCls.
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Fig. S4 3C-NMR spectrum of 1M (98 mM) in CDCls.
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Fig. S8 FT-IR spectra of 10, 1M and 1P.

2. Photophysical properties and crystal data
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Fig. S9 PL spectra of (a) 10, (b) 1M and (c) 1P in THF/H>O mixtures with different water content (Aex

= 370 nm). Accordingly, UV-vis spectra of (d) 10, (¢) 1M and (f) 1P in THF/H>O mixtures with
different water content (20 4M).
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Fig. S11 The lifetimes of 10 and 1P in (a) the crystal states and (b) the powder states (dex =365 nm).

Table S1 The photophysical properties of 10 and 1P

Compound | state PL (nm) | 1 (ns) PLQY | k(s fenr (571)?

powder | 500 6.365 0.36 5.686x107 | 1.003x10%

10 1= 4.93 (0.82)

crystal | 505 029 | 4.509x107 | 1.129x10®
1 =12.70 (0.18)

1 = 1.60 (0.85)

480 1.700x10% [ 2.390x108
T2 =7.24 (0.15)
powder 0.42
71 =1.91(0.83)
505 1.349x10% [ 1.896x108
1, =8.83(0.17)
1P
11 =3.67 (0.75)
480 6.427x107 | 1.043x108
T2=12.73 (0.25)
crystal 0.38
T1=4.22 (0.80)
505 5.871x107 | 9.531x107

1, = 15.59 (0.20)

@Radiative transition rate constant: kr = @p/<T>.

bNon-radiative transition rate constant: knr = (1 - @p)/<t>. <> = (A111% +A2122)/(A1T1+ALT2).
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Table S2 Crystal data and structure refinements for 10, 1M and 1P

Compound 10 M 1P

Empirical formula CpHi2FsNa CnHi2FsNa CaHi2FsN2
Formula weight/g mol™! 418.34 418.34 418.34

T/K 293(2) 293(2) 293(2)

A 0.71073 0.71073 0.71073
Crystal system Monoclinic Monoclinic Triclinic
Space group P2/c C2/c P-1

Unit cell dimensions/A a=15.858(2) a=27.4290(13) a=28.7740(18)

Unit cell angles/°

Volume/A3

zZ

p(calculated)/Mg m™
Absorption coefficient/mm-!
F(000)

Crystal size/mm?

6 range for data collection/®

Index ranges

Reflections collected
Independent reflections
Completeness to 6 =27.48
Absorption correction

Max. and min. transmission
Refinement method

Data / restraints / parameters
Goodness-of-fit on F?

Final R indices [/ > 20(/)]

R indices (all data)

Largest diff. peak and hole/e A=

CCDC

b=18.8033(12)

¢ =13.6717(18)

a=90
£=95.506(6)

y=90

1899.8(4)

4

1.463

0.128

848

0.140 x 0.120 x 0.100
2.982 to 27.558

20<=h<=18,
Adl<=k<=11,

-17<=1<=16

17810

4109 [R(int) = 0.0471]

96.1 %

Semi-empirical from equivalents
0.987 and 0.982

Full-matrix least-squares on F2
4109/6/352

1.083

R1=10.0860, wR> = 0.2328
Ri1=0.1263, wR>= 0.2626
0.330 and -0.211

1863051

b=9.1587(4)

¢ = 15.1392(6)

a=90
£=98.565(3)

y=90

3760.8(3)

1.478

0.129

1696

0.130 x 0.120 x 0.100
2.656 to 28.308

236 <=h<=36,
Sl2<=k<=12,

20<=1<=20

37714

4669 [R(int) = 0.0360]

99.9 %

Semi-empirical from equivalents
0.987 and 0.983

Full-matrix least-squares on F?
4669 /0/327

1.047

R1=10.0616, wR2 = 0.1597
R1=0.0805, wR>=0.1751
0.267 and -0.197

1863052

b=9.0110(18)

c=11.624(2)

o=85.74(3)
B=88.18(3)

7= 86.44(3)

914.4(3)

1.519

0.133

424

0.13 % 0.12x 0.10
3.15t027.48

All<=h<=1l1,
11 <=k<=10,

-Is5<=1<=14

8950

4156 [R(int) = 0.0446]

98.7 %

Semi-empirical from equivalents
0.9868 and 0.9829

Full-matrix least-squares on F?
4156 /72/327

0.980

R1=0.0624, wR, = 0.1827
Ri=0.1119, wR>=0.2277
0.412 and -0.327

1863053

S11



3. Photodimerization reaction

8,

—

Fig. S12 The parameters are usually considered to be geometric criteria for [2+2] cycloaddition.
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Fig. S13 'H-NMR spectra of 10 and 1P crystals (14 mM) before and after irradiation.

Synthesis of photodimerization product c-1M

The powder of 1M (0.30 g, 0.72 mmol) in the nuclear magnetic tubes was irradiated
with 365 nm UV light from a 20 W LED lamp for 30 min. The crude product was
purified by silica-gel chromatography using ethyl acetate/CH>Cl> mixture (1:10, v/v)
as eluent to obtain c-1M (0.20 g, yield 67%).

"H-NMR (500 MHz, CDCl3) 8/ppm = 8.80 (s, 2H), 8.64 (d, J = 3.9 Hz, 2H), 7.85 (s,
2H), 7.82 (d, J = 7.9 Hz, 2H), 7.71 (s, 4H), 7.59 (d, J = 8.1 Hz, 4H), 7.45 (d, J = 8.1
Hz, 4H), 7.39 (dd, J = 7.6, 4.9 Hz, 2H), 5.39 (s, 2H). *C-NMR (126 MHz, CDCl5)
d/ppm = 149.43, 148.33, 140.07, 136.94, 135.23, 134.52, 132.73 (q, J = 34.17 Hz),
130.76, 130.23, 128.37, 128.26, 123.83, 123.26, 122.63 (q, J = 273.83 Hz), 119.91,
55.64 and 47.34.
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365 nm).

250 -

200- — 1M PMMA
~
= 150
[~
j——
Z
= 100+
=
"]
=
= 50-

O-MJ

I ' 1 v ) ' ] ' 1 i 1 ' 1

350 400 450 500 550 600 650 700
Wavelength (nm)

Fig. S19 PL spectrum (Aex =365 nm) of 1M of 3% wt. in polymethylmethacrylate (PMMA).

S 15



4. Characterization of cocrystals

10000-5 —— 1M-12 crystal @ 482 nm
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Fig. S20 The lifetimes of 1M-12 and 1M-I3 in the crystal states (lex =365 nm).

Table S3 The photophysical properties of cocrystals IM-12 and 1M-I3

Compound PL (nm) t(ns) PLQY k(s ke (s71)?
1M-12 482 1298  0.55 4.230x107  3.475x107
1M-I3 484 8.29 0.41 4.989x107  7.079x107

@Radiative transition rate constant: kr = @p/<t>.

b Non-radiative transition rate constant: kn = (1 - Pr)/<t>. <t> = (A111% +A22)/(A1T1+ALD).

a b

) (100) (300 1M-I2 Crystal ) o 3;)02)

500
] [

s IM| & 1M
£ £

2 £

2 2

E 'MJLJ\—"———JLJL-““L SPLEN \—-‘IZW“' E W

5 10 15 20 25 30 35 5 10 15 20 25 30 3
2 Theta (degree) 2 Theta (degree)

Fig. S21 XRD patterns of the cocrystals (a) 1M-12, (b) 1M-I3 and their components.
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Fig. S22 FT-IR spectra of molecules 12, I3, 1M, 1M-12 and 1M-I3.
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Fig. S23 Thermal analysis of the complexes (a) 1M-I2, (b) 1M-I3 and their components (20 °C min™!

on the second heating cycle).
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Table S4 Crystal data and structure refinements for IM-12 and 1M-I3

Compound

1M-I12

1IM-I3

Empirical formula
Formula weight/g mol!
T/K

A

Crystal system

Space group

Unit cell dimensions/A

Unit cell angles/®

Volume/A3

VA

p(calculated)/Mg m™
Absorption coefficient/mm-!
F(000)

Crystal size/mm?

6 range for data collection/°

Index ranges

Reflections collected
Independent reflections
Completeness to § =27.48
Absorption correction

Max. and min. transmission

Refinement method

Data / restraints / parameters

Goodness-of-fit on F?
Final R indices [/ > 20(])]
R indices (all data)

Large st diff. peak and hole/e A~

CCDC

CsoH24F 1612N4
1238.53
293(2)
0.71073
Monoclinic
P2i/c

a=17.0950(5)
b= 14.8620(4)
¢=9.2252(3)

o=90
£=91.4590(10)
=90

2343.05(12)
2

1.756

1.447

1204

0.130 x 0.120 x 0.100
2.750 to 28.275

22<=h<=22,
-19<=k<=19,
-12<=1<=11

27896
5804 [R(int) = 0.0230]
99.8 %

Semi-empirical from equivalents

0.869 and 0.834

Full-matrix least-squares on F>

5804 /0/433

1.025

R1=0.0360, wR> =0.0901
R1=0.0499, wR>=0.1001
0.472 and -0.660

1863054

CsoH24F 1513N4
1346.43
293(2)
0.71073
Monoclinic
C2/c

a=24.2597(17)
b=9.1991(5)
¢=23.5097(13)

a=90
£ =103.794(4)
y=90

5095.3(5)
4

1.755

1.934

2584

0.130 x 0.120 x 0.100
2.765 to 27.477

3l <=h<=3l,
All<=k<=11,
30<=[<=30

52240
5814 [R(int) = 0.0404]
99.8 %

Semi-empirical from equivalents

0.830 and 0.787

Full-matrix least-squares on F>

5814 /12/381

1.066

R1=0.0474, wR> = 0.1094
R1=0.0643, wR>=0.1245
1.509 and -1.147

1863055
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Fig. S24 Molecular configurations in the crystals of (a) 1M, (b) 1M-12 and (c) 1M-I3.

1M-13
after irradiation

1M-12
after irradiation

1M

Lo L

91 89 87 85 83 81 79 77 75 73 71 56 54 52 5.0

Fig. S25 'H-NMR spectra of 1M, IM-12 and 1M-I3 (14 mM) after irradiation.
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Fig. S26 PL spectra and lifetimes of powders for (a) 1M-I2 and (b) 1M-I3. The insets show the

fluorescent microphotographs of powders, respectively (lex =365 nm).
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Fig. S27 Experimental XRD patterns of (a) 1M-12 powder and (b) 1M-I3 powder and the calculated

diffraction patterns based on the single crystal data.
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Fig. S28 Constant temperature weight loss curve of IM-12.
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Fig. S29 TGA curve of cocrystal IM-I3 (10 °C min™).
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