Electronic Supporting Information

Reversible Luminescent "Off-On" Regulation Based on Tunable Photodimerization via Crystal-to-Cocrystal Transformation

Yufei Wang, ${ }^{\text {ab }}$ Hongxing Shang, ${ }^{\text {ab }}$ Bao Li ${ }^{\text {b }}$ and Shimei Jiang ${ }^{\text {ab }}$

${ }^{a}$ Engineering Research Center of Organic and Polymer Optoelectronic Materials, Ministry of Education, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
${ }^{b}$ State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China

E-mail: smjiang@jlu.edu.cn

Contents

1. Synthesis and characterization of compounds S2
2. Photophysical properties and crystal data S9
3. Photodimerization reaction S12
4. Characterization of cocrystals S16

1. Synthesis and characterization of compounds

Scheme S1 Synthetic routes of 1O, 1M and 1P.

Synthesis of 4-(pyridin-2-yl)benzaldehyde

(4-formylphenyl)boronic acid $(1.74 \mathrm{~g}, 11.6 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.26 \mathrm{~g}, 30.8 \mathrm{mmol})$ were dispersed in the mixture solvent of 60.0 mL of 1,4-dioxane and 15.0 mL of water. The solution was stirred at room temperature and bubbled with nitrogen for 30 min. Then 2-bromopyridine ($735 \mu \mathrm{~L}, 1.22 \mathrm{~g}, 7.71 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.45 \mathrm{~g}, 0.39$ mmol) were added. The mixture was heated to reflux. After 9 hours, the reaction mixture was cooled to room temperature and solvent was removed on a rotary evaporator. The residue was poured into saturated salt water and extracted with ethyl acetate. The organic layer was dried over MgSO_{4}. After filtration and solvent evaporation, the crude product was purified by silica-gel chromatography using ethyl acetate/hexane mixture (1:2, v/v) as eluent to obtain 4-(pyridin-2-yl)benzaldehyde (1.20 g , yield 81%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=10.09(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 1 \mathrm{H})$.

Synthesis of 4-(pyridin-3-yl)benzaldehyde

4-bromobenzaldehyde ($1.50 \mathrm{~g}, 8.10 \mathrm{mmol}$), pyridin-3-ylboronic acid $(1.20 \mathrm{~g}, 9.76$ $\mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.26 \mathrm{~g}, 30.8 \mathrm{mmol})$ were dispersed in the mixture solvent of 40.0 mL of toluene, 15.0 mL of isopropanol and 15.0 mL of water. The solution was stirred at room temperature and bubbled with nitrogen for 30 min . Then $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(0.45 \mathrm{~g}, 0.39 \mathrm{mmol})$ was added. The mixture was heated to reflux. After 9 hours, the reaction mixture was cooled to room temperature and solvent was removed on a rotary evaporator. The residue was poured into saturated salt water and extracted with ethyl acetate. The organic layer was dried over MgSO_{4}. After filtration and solvent evaporation, the crude product was purified by silica-gel chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ hexane mixture ($2: 1, \mathrm{v} / \mathrm{v}$) as eluent to obtain 4-(pyridin-3-yl)benzaldehyde (0.83 g , yield 56\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=10.09(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~d}$, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.43(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H})$.

Synthesis of 4-(pyridin-4-yl)benzaldehyde

(4-formylphenyl)boronic acid ($1.50 \mathrm{~g}, 7.71 \mathrm{mmol}$), 4-bromopyridine hydrochloride $(1.74 \mathrm{~g}, 11.6 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.26 \mathrm{~g}, 30.8 \mathrm{mmol})$ were dispersed in the mixture solvent of 60.0 mL of 1,4-dioxane and 15.0 mL of water. The solution was stirred at room temperature and bubbled with nitrogen for 30 min . Then $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.45 \mathrm{~g}, 0.39$ mmol) was added. The mixture was heated to reflux. After 9 hours, the reaction mixture was cooled to room temperature and solvent was removed on a rotary evaporator. The residue was poured into saturated salt water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over MgSO_{4}. After filtration and solvent evaporation, the crude product was purified by silica-gel chromatography using ethyl acetate/hexane mixture ($2: 1, \mathrm{v} / \mathrm{v}$) as eluent to obtain 4-(pyridin-4-yl)benzaldehyde (1.36 g , yield 92\%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=10.10(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{dd}, J=4.6,1.5 \mathrm{~Hz}, 2 \mathrm{H})$, $8.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=4.6,1.5 \mathrm{~Hz}, 2 \mathrm{H})$.

Synthesis of 10

(Z)-2-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(pyridin-2-yl)-phenyl)acrylonitrile

2-(3,5-bis(trifluoromethyl)phenyl)acetonitrile ($0.55 \mathrm{~mL}, 0.76 \mathrm{~g}, 3.0 \mathrm{mmol}$) and 4-(pyridin-2-yl)benzaldehyde ($0.55 \mathrm{~g}, 3.0 \mathrm{mmol}$) were dissolved in 15.0 mL of 20 $\mathrm{mM} \mathrm{CH} \mathrm{CHNa}_{3} / \mathrm{CH}_{3} \mathrm{OH}$. The mixture was stirred at room temperature for two days. After that, the precipitate was filtered and washed several times with methanol and water, respectively. The product was obtained (1.03 g , yield 82%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=8.75(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 8.13$ (s, 2H), 8.08 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.92$ (s, 1H), 7.83 (d, $J=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.71$ (s, 1H), $7.32(\mathrm{q}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=155.89$, 150.06, 144.92, 142.40, 137.16, 136.92, 133.20, 132.88 (q, $J=33.80 \mathrm{~Hz}$), 130.36, $127.68,126.15,123.12,123.09(q, J=273.58 \mathrm{~Hz}), 122.83,120.99,117.14$ and 109.07. Anal. Calc. for $\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{~N}_{2}$: C, 63.16; H, 2.89; N, 6.70. Found: C, 63.73; H, 2.74; N, 6.66. MS: $\mathrm{m} / \mathrm{z}=418.36$.

Synthesis of 1M

(Z)-2-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(pyridin-3-yl)-phenyl)acrylonitrile

2-(3,5-bis(trifluoromethyl)phenyl)acetonitrile ($0.55 \mathrm{~mL}, 0.76 \mathrm{~g}, 3.0 \mathrm{mmol}$) and 4-(pyridin-3-yl)benzaldehyde ($0.55 \mathrm{~g}, 3.0 \mathrm{mmol}$) were dissolved in 15.0 mL of 20 $\mathrm{mM} \mathrm{CH} \mathrm{C}_{3} \mathrm{ONa} / \mathrm{CH}_{3} \mathrm{OH}$. The mixture was stirred at room temperature for two days. After that, the precipitate was filtered and washed several times with methanol and water, respectively. The product was obtained (1.13 g , yield 90%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=8.91(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{dd}, J=4.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 2 \mathrm{H}), 8.07(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.98-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.74$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta / \mathrm{ppm}=149.47,148.33,144.61,141.08,136.77,135.33,134.51,132.92(\mathrm{q}, J=33.86$ $\mathrm{Hz})$, $132.55,130.60,127.90,126.16,123.89,123.06(\mathrm{q}, ~ J=273.52 \mathrm{~Hz})$, 122.93, 117.08 and 109.36. Anal. Calc. for $\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{~N}_{2}$: C, 63.16; H, 2.89; N, 6.70. Found: C, 63.98; H, 2.66; N, 6.74. MS: m/z = 418.36.

Synthesis of 1P

(Z)-2-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(pyridin-4-yl)-phenyl)acrylonitrile

2-(3,5-bis(trifluoromethyl)phenyl)acetonitrile ($0.55 \mathrm{~mL}, 0.76 \mathrm{~g}, 3.0 \mathrm{mmol}$) and 4-(pyridin-4-yl)benzaldehyde ($0.55 \mathrm{~g}, 3.0 \mathrm{mmol}$) were dissolved in 15.0 mL of 20 $\mathrm{mM} \mathrm{CH} 3 \mathrm{CNa}^{2} / \mathrm{CH}_{3} \mathrm{OH}$. The mixture was stirred at room temperature for two days. After that, the precipitate was filtered and washed several times with methanol and water, respectively. The product was obtained (1.07 g , yield 85%).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=8.72(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.12(\mathrm{~s}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=150.56,147.00,144.41,141.22,136.67$, $133.45,132.96$ (q, $J=33.97 \mathrm{~Hz}$), 130.58, 127.89, 126.22, 123.05, 123.05 ($\mathrm{q}, ~ J=$ 273.46 Hz), 121.64, 116.98 and 109.86. Anal. Calc. for $\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{~N}_{2}$: C, 63.16; H, 2.89; $\mathrm{N}, 6.70$. Found: C, 63.76; H, 2.96; N, 6.67. MS: $\mathrm{m} / \mathrm{z}=418.34$.

Fig. S1 ${ }^{1} \mathrm{H}$-NMR spectrum of $1 \mathrm{O}(14 \mathrm{mM})$ in CDCl_{3}.

Fig. S2 ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $1 \mathrm{O}(98 \mathrm{mM})$ in CDCl_{3}.

Fig. $\mathbf{S 3}{ }^{1} \mathrm{H}$-NMR spectrum of $1 \mathrm{M}(98 \mathrm{mM})$ in CDCl_{3}.

Fig. $\mathbf{S 4}{ }^{13} \mathrm{C}$-NMR spectrum of $1 \mathrm{M}(98 \mathrm{mM})$ in CDCl_{3}.

Fig. $\mathbf{S 5}{ }^{1} \mathrm{H}$-NMR spectrum of $1 \mathrm{P}(98 \mathrm{mM})$ in CDCl_{3}.

Fig. $\mathbf{S 6}^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $1 \mathrm{P}(98 \mathrm{mM})$ in CDCl_{3}.

Fig. S7 DSC traces of (a) 1O, (b) 1 M and (c) $1 \mathrm{P}\left(20^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}\right.$ on the second cycle $)$.

Fig. S8 FT-IR spectra of $10,1 \mathrm{M}$ and 1 P .
2. Photophysical properties and crystal data

Fig. S9 PL spectra of (a) 1 O , (b) 1 M and (c) 1 P in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixtures with different water content $\left(\lambda_{\mathrm{ex}}\right.$ $=370 \mathrm{~nm}$). Accordingly, UV-vis spectra of (d) 1 O , (e) 1 M and (f) 1 P in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixtures with different water content $(20 \mu \mathrm{M})$.

Fig. S10 PL spectra of (a) crystals and (b) powders for $10,1 \mathrm{M}$ and 1 P . The insets show the fluorescent microphotographs of crystals and powders, respectively ($\lambda_{\mathrm{ex}}=365 \mathrm{~nm}$).

Fig. S11 The lifetimes of 10 and 1P in (a) the crystal states and (b) the powder states ($\lambda_{\mathrm{ex}}=365 \mathrm{~nm}$).

Table S1 The photophysical properties of 10 and 1P

Compound	state	PL (nm)	τ (ns)	PLQY	$k_{\mathrm{r}}\left(\mathrm{s}^{-1}\right)^{a}$	$k_{\mathrm{nr}}\left(\mathrm{s}^{-1}\right)^{b}$
10	powder	500	6.365	0.36	5.686×10^{7}	1.003×10^{8}
	crystal	505	$\begin{aligned} \tau_{1} & =4.93(0.82) \\ \tau_{2} & =12.70(0.18) \end{aligned}$	0.29	4.509×10^{7}	1.129×10^{8}
1P	powder	480	$\begin{aligned} & \tau_{1}=1.60(0.85) \\ & \tau_{2}=7.24(0.15) \end{aligned}$	0.42	1.700×10^{8}	2.390×10^{8}
		505	$\begin{aligned} & \tau_{1}=1.91(0.83) \\ & \tau_{2}=8.83(0.17) \end{aligned}$		1.349×10^{8}	1.896×10^{8}
	crystal	480	$\begin{aligned} \tau_{1} & =3.67(0.75) \\ \tau_{2} & =12.73(0.25) \end{aligned}$	0.38	6.427×10^{7}	1.043×10^{8}
		505	$\begin{aligned} & \tau_{1}=4.22(0.80) \\ & \tau_{2}=15.59(0.20) \end{aligned}$		5.871×10^{7}	9.531×10^{7}

a. Radiative transition rate constant: $k_{\mathrm{r}}=\Phi_{\mathrm{F}} /\langle\tau>$.
${ }^{b} \cdot N o n-r a d i a t i v e ~ t r a n s i t i o n ~ r a t e ~ c o n s t a n t: ~ k n r ~\left(1-\Phi_{\mathrm{F}}\right) /\langle\tau\rangle .\langle\tau\rangle=\left(\mathrm{A}_{1} \tau_{1}^{2}+\mathrm{A}_{2} \tau_{2}^{2}\right) /\left(\mathrm{A}_{1} \tau_{1}+\mathrm{A}_{2} \tau_{2}\right)$.

Table S2 Crystal data and structure refinements for $10,1 \mathrm{M}$ and 1 P

Compound	10	1M	1P
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{~N}_{2}$	$\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{~N}_{2}$	$\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{~N}_{2}$
Formula weight/g mol${ }^{-1}$	418.34	418.34	418.34
T/K	293(2)	293(2)	293(2)
λ / \AA	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	P2/c	C2/c	$P-1$
Unit cell dimensions/ \AA	$a=15.858(2)$	$a=27.4290$ (13)	$a=8.7740$ (18)
	$b=8.8033$ (12)	$b=9.1587(4)$	$b=9.0110(18)$
	$c=13.6717(18)$	$c=15.1392(6)$	$c=11.624(2)$
Unit cell angles/ ${ }^{\circ}$	$\alpha=90$	$\alpha=90$	$\alpha=85.74$ (3)
	$\beta=95.506(6)$	$\beta=98.565(3)$	$\beta=88.18$ (3)
	$\gamma=90$	$\gamma=90$	$\gamma=86.44$ (3)
Volume $/ \AA^{3}$	1899.8(4)	3760.8(3)	914.4(3)
Z	4	8	2
ρ (calculated)/ $\mathrm{Mg} \mathrm{m}^{-3}$	1.463	1.478	1.519
Absorption coefficient/ $/ \mathrm{mm}^{-1}$	0.128	0.129	0.133
$F(000)$	848	1696	424
Crystal size $/ \mathrm{mm}^{3}$	$0.140 \times 0.120 \times 0.100$	$0.130 \times 0.120 \times 0.100$	$0.13 \times 0.12 \times 0.10$
θ range for data collection $/{ }^{\circ}$	2.982 to 27.558	2.656 to 28.308	3.15 to 27.48
Index ranges	$-20<=h<=18$,	$-36<=h<=36$,	$-11<=h<=11$,
	$-11<=k<=11$,	$-12<=k<=12$,	$-11<=k<=10$,
	$-17<=l<=16$	$-20<=l<=20$	$-15<=l<=14$
Reflections collected	17810	37714	8950
Independent reflections	$4109[R(\mathrm{int})=0.0471]$	$4669[R(\mathrm{int})=0.0360]$	$4156[R(\mathrm{int})=0.0446]$
Completeness to $\theta=27.48$	96.1 \%	99.9 \%	98.7\%
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	0.987 and 0.982	0.987 and 0.983	0.9868 and 0.9829
Refinement method	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4109 / 6 / 352	4669 / 0 / 327	4156 / 72 / 327
Goodness-of-fit on F^{2}	1.083	1.047	0.980
Final R indices [$I>2 \sigma(I)$]	$R_{1}=0.0860, \mathrm{w} R_{2}=0.2328$	$R_{1}=0.0616, \mathrm{w} R_{2}=0.1597$	$R_{1}=0.0624, \mathrm{w} R_{2}=0.1827$
R indices (all data)	$R_{1}=0.1263, \mathrm{w} R_{2}=0.2626$	$R_{1}=0.0805, \mathrm{w} R_{2}=0.1751$	$R_{1}=0.1119, \mathrm{w} R_{2}=0.2277$
Largest diff. peak and hole/e \AA^{-3}	0.330 and -0.211	0.267 and -0.197	0.412 and -0.327
CCDC	1863051	1863052	1863053

3. Photodimerization reaction

Fig. S12 The parameters are usually considered to be geometric criteria for [2+2] cycloaddition.

Fig. S13 ${ }^{1} \mathrm{H}$-NMR spectra of 1 O and 1P crystals $(14 \mathrm{mM})$ before and after irradiation.

Synthesis of photodimerization product $\boldsymbol{c}-\mathbf{1 M}$

The powder of $1 \mathrm{M}(0.30 \mathrm{~g}, 0.72 \mathrm{mmol})$ in the nuclear magnetic tubes was irradiated with 365 nm UV light from a 20 W LED lamp for 30 min . The crude product was purified by silica-gel chromatography using ethyl acetate/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ mixture ($1: 10, \mathrm{v} / \mathrm{v}$) as eluent to obtain $c-1 \mathrm{M}(0.20 \mathrm{~g}$, yield $67 \%)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=8.80(\mathrm{~s}, 2 \mathrm{H}), 8.64(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~s}$, $2 \mathrm{H}), 7.82$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.71$ (s, 4H), 7.59 (d, $J=8.1 \mathrm{~Hz}, 4 \mathrm{H}$), 7.45 (d, $J=8.1$ $\mathrm{Hz}, 4 \mathrm{H}$), 7.39 (dd, $J=7.6,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta / \mathrm{ppm}=149.43,148.33,140.07,136.94,135.23,134.52,132.73(\mathrm{q}, J=34.17 \mathrm{~Hz})$, $130.76,130.23,128.37,128.26,123.83,123.26,122.63(\mathrm{q}, J=273.83 \mathrm{~Hz}), 119.91$, 55.64 and 47.34 .

Fig. S14 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathrm{c}-1 \mathrm{M}(98 \mathrm{mM})$ in CDCl_{3}.

15014514013513012512011511010510095
Fig. S15 ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of $\mathrm{c}-1 \mathrm{M}(98 \mathrm{mM})$ in CDCl_{3}.

Fig. S16 FT-IR spectra of 1 M and c-1M. Insert: amplifying curves of cyano stretching peaks.

Fig. S17 MALDI-TOF mass spectrum of $c-1 \mathrm{M}$.

Fig. S18 PL spectrum of $c-1 \mathrm{M}$ powder and inset is fluorescence microscopy image of pure $c-1 \mathrm{M}\left(\lambda_{\mathrm{ex}}=\right.$ 365 nm).

Fig. S19 PL spectrum ($\lambda_{\mathrm{ex}}=365 \mathrm{~nm}$) of 1 M of $3 \% \mathrm{wt}$. in polymethylmethacrylate (PMMA).

4. Characterization of cocrystals

Fig. S20 The lifetimes of 1M-I2 and 1M-I3 in the crystal states ($\lambda_{\mathrm{ex}}=365 \mathrm{~nm}$).

Table S3 The photophysical properties of cocrystals 1M-I2 and 1M-I3

Compound	PL (nm)	$\tau(\mathrm{ns})$	PLQY	$k_{\mathrm{r}}\left(\mathrm{s}^{-1}\right)^{a}$	$k_{\mathrm{nr}}\left(\mathrm{s}^{-1}\right)^{b}$
$\mathbf{1 M - I 2}$	482	12.98	0.55	4.230×10^{7}	3.475×10^{7}
$\mathbf{1 M - I 3}$	484	8.29	0.41	4.989×10^{7}	7.079×10^{7}

a. Radiative transition rate constant: $k_{\mathrm{r}}=\Phi_{\mathrm{F}} /\langle\tau\rangle$.
${ }^{b} \cdot$ Non-radiative transition rate constant: $k_{\mathrm{nr}}=\left(1-\Phi_{\mathrm{F}}\right) /\langle\tau\rangle .\langle\tau\rangle=\left(\mathrm{A}_{1} \tau_{1}^{2}+\mathrm{A}_{2} \tau_{2}^{2}\right) /\left(\mathrm{A}_{1} \tau_{1}+\mathrm{A}_{2} \tau_{2}\right)$.

Fig. S21 XRD patterns of the cocrystals (a) 1M-I2, (b) 1M-I3 and their components.

Fig. S22 FT-IR spectra of molecules I2, I3, 1M, 1M-I2 and 1M-I3.

Fig. S23 Thermal analysis of the complexes (a) 1M-I2, (b) 1M-I3 and their components ($20{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$ on the second heating cycle).

Table S4 Crystal data and structure refinements for 1M-I2 and 1M-I3

Compound	1M-I2	1M-I3
Empirical formula	$\mathrm{C}_{50} \mathrm{H}_{24} \mathrm{~F}_{16} \mathrm{I}_{2} \mathrm{~N}_{4}$	$\mathrm{C}_{50} \mathrm{H}_{24} \mathrm{~F}_{15} \mathrm{I}_{3} \mathrm{~N}_{4}$
Formula weight/g mol ${ }^{-1}$	1238.53	1346.43
T / K	293(2)	293(2)
λ / \AA	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic
Space group	$P 2{ }_{1} / \mathrm{c}$	C2/c
Unit cell dimensions/ \AA	$a=17.0950(5)$	$a=24.2597$ (17)
	$b=14.8620(4)$	$b=9.1991(5)$
	$c=9.2252(3)$	$c=23.5097(13)$
Unit cell angles $/{ }^{\circ}$	$\alpha=90$	$\alpha=90$
	$\beta=91.4590$ (10)	$\beta=103.794(4)$
	$\gamma=90$	$\gamma=90$
Volume/ \AA^{3}	2343.05(12)	5095.3(5)
Z	2	4
ρ (calculated) $/ \mathrm{Mg} \mathrm{m}^{-3}$	1.756	1.755
Absorption coefficient $/ \mathrm{mm}^{-1}$	1.447	1.934
$F(000)$	1204	2584
Crystal size $/ \mathrm{mm}^{3}$	$0.130 \times 0.120 \times 0.100$	$0.130 \times 0.120 \times 0.100$
θ range for data collection $/{ }^{\circ}$	2.750 to 28.275	2.765 to 27.477
Index ranges	$\begin{aligned} & -22<=h<=22, \\ & -19<=k<=19, \\ & -12<=l<=11 \end{aligned}$	$\begin{aligned} & -31<=h<=31, \\ & -11<=k<=11, \\ & -30<=l<=30 \end{aligned}$
Reflections collected	27896	52240
Independent reflections	$5804[R(\mathrm{int})=0.0230]$	$5814[R(\mathrm{int})=0.0404]$
Completeness to $\theta=27.48$	99.8 \%	99.8\%
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	0.869 and 0.834	0.830 and 0.787
Refinement method	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}
Data / restraints / parameters	5804 / 0 / 433	5814/12/381
Goodness-of-fit on F^{2}	1.025	1.066
Final R indices [$I>2 \sigma(I)$]	$R_{1}=0.0360, \mathrm{w} R_{2}=0.0901$	$R_{1}=0.0474, \mathrm{w} R_{2}=0.1094$
R indices (all data)	$R_{1}=0.0499, \mathrm{w} R_{2}=0.1001$	$R_{1}=0.0643, \mathrm{w} R_{2}=0.1245$
Large st diff. peak and hole/e \AA^{-3}	0.472 and -0.660	1.509 and -1.147
CCDC	1863054	1863055

Fig. S24 Molecular configurations in the crystals of (a) 1 M , (b) 1M-I2 and (c) 1M-I3.

Fig. S25 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $1 \mathrm{M}, 1 \mathrm{M}-\mathrm{I} 2$ and $1 \mathrm{M}-\mathrm{I} 3(14 \mathrm{mM})$ after irradiation.

Fig. S26 PL spectra and lifetimes of powders for (a) 1M-I2 and (b) 1M-I3. The insets show the fluorescent microphotographs of powders, respectively $\left(\lambda_{\mathrm{ex}}=365 \mathrm{~nm}\right)$.

Fig. S27 Experimental XRD patterns of (a) 1M-I2 powder and (b) 1M-I3 powder and the calculated diffraction patterns based on the single crystal data.

Fig. S28 Constant temperature weight loss curve of 1M-I2.

Fig. S29 TGA curve of cocrystal $1 \mathrm{M}-\mathrm{I} 3\left(10^{\circ} \mathrm{C} \mathrm{min}^{-1}\right)$.

