Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information (ESI)

Host-Guest Interaction-Directed Strategy for Managing Mechanochromic Luminescent Behavior by Modulating Molecular Packing and Conformation

Xie Han,*^{a,b} DongDong Sun,^a Shi Tang,^a Yong Wu,^a Luyao Wang,^a Xiongzhi Zhang,^{a,b} and Simin Liu*^{a,b}

E-mail: <u>hanxie@wust.edu.cn;</u> <u>liusimin@wust.edu.cn</u>

^a School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081 (P.R. China)

^b The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (P.R. China)

Table of Contents

.

Table of Contents	Page
Table of Contents	 S2
General Information	 S3
Synthesis and Characterization	 S3
UV/vis and Fluorescence spectra for \ensuremath{NBDP} in different solvents	 S3
FTIR and absorption spectra for NBDP in the absence and presence of CB[8]	 S3-4
DFT calculation for CB[8]·NBDP ₂	 S4-5
Absorption spectra of NBDP in the presence of CB[6], PXRD patterns	 S5
Fluorescence spectra of NBDP and NBDP@CB[8] powder, table summarizing the fluorescence, PXRD patterns	 S6-7
Fluorescence spectra and intermolecular interactions in NBDP-O, NBDP-G and CB[8]•NBDP ₂	 S7-11
NMR and EI/MS spectra of NBDP , table summarizing the main crystallographic parameters	 S11-14

General Information.

CB[8] were prepared by the corresponding literature procedures.¹ Other compounds used in this study were purchased from commercial suppliers and were used without further purification. NMR spectra (¹H and ¹³C) were collected on Agilent 600 MHz DD2 spectrometers. EI-MS was obtained using Thermo scientific DSQII. UV/Vis were performed on a SHIMADZU UV-3600 instrument with 1 cm pathlength cells at 298 K. Fluorescence spectra were measured on a PerkinElmer LS-55 machine. The X-ray intensity data were measured on a Bruker APEX-II CCD system equipped with a graphite monochromator. PXRD date were collected in a bruker D8 X-ray diffractometer using the Cu K α line (λ = 1.5418 Å). The quantum chemistry calculation was performed on Gaussian 16 (M06-2X/6-311G(d) basis set) software package. The interaction region plotted by independent gradient model (IGM) was analyzed by means of the Multiwfn package² and VMD software.³

Synthesis and Characterization:

The synthetic route of NBDP

Synthesis of NBDP: 4-chloro-7-nitro-2,1,3-benzoxadiazole (100 mg, 0.5 mmol), 4-Pyridinol (57 mg, 0.6 mmol) and Et₃N (0.1 mL) were dissolved in dry acetonitrile (20 mL) under a nitrogen atmosphere. The reactants were stirred and heated at reflux for 12 h. The mixture was then evaporated and purified by means of column chromatography (DCM : MeOH = 50:1, $R_f = 0.15$), as a yellow solid (62 mg, 49%).¹H NMR (600 MHz, D₂O): δ 8.86(d, *J* = 6 Hz, 1H), 8.48(d, *J* = 12 Hz, 1H), 7.99 (d, *J* = 6 Hz, 2H), 6.80 (d, *J* = 6 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 178.94, 145.48, 143.77, 137.55, 136.51, 130.86, 120.45, 118.83. EI-MS: m/z = 257.95 [M]⁺; calculated exact mass: 258.04.

Synthesis of NBDP@CB[8]: CB[8] solid (10 mg) was added to the aqueous solution of NBDP (1 mM, 1 mL) and followed by ultrasonic treatment for 5 min. The precipitate was centrifuged at 10000 rpm for 2 min and washed with DI water for 3 times, then the separated solid was dried at 60 °C.

Figure S1. (a) UV/vis absorption and (b) fluorescence spectra of NBDP in different solvents (10 uM, λ_{ex} = 420 nm).

Figure S2 FTIR spectra of CB[8], NBDP, and CB[8] that absorbed NBDP.

Figure S3 Absorption spectra change of NBDP in different solvents in the absence and presence of CB[8].

Figure S4 Absorption spectra of NBDP aqueous solution (1 mM, 1mL) in the absence and presence of different equivalents of CB[8].

Figure S5. Molecular structures optimized by DFT calculation for CB[8]·NBDP₂.

Figure S6 Independent Gradient Model (IGM) analysis of CB[8]·NBDP₂. Green surfaces represent the van der Waals interaction.

Figure S7 Absorption spectra of NBDP aqueous solution (1 mM, 1 mL) in the absence and presence of CB[6].

Figure S8 Powder X-ray diffraction (PXRD) patterns of CB[8], NBDP@CB[8] powder and CB[8]·NBDP₂ crystal (simulated from crystal structure of CB[8]·NBDP₂).

Figure S9 Normalized fluorescence spectra of (a) NBDP and (b) NBDP@CB[8] powder under different treatments.

Table S1 Fluorescence emission maxima of NBDP molecule in its different states.

Compound	λ_{em} (nm) (pristine) ^a	λ_{em} (nm) (ground)	Emission wavelength shift (nm)
NBDP	550	568	18
NBDP-G	534	565	31
NBDP-O	565	565	0
NBDP@CB[8]	569	548	-21 ^b
CB[8]·NBDP ₂	569	579	10

^aExcited at 400 nm. ^bBlue-shift of the emission after grinding.

Figure S10 Powder X-ray diffraction (PXRD) patterns of (a) NBDP and (b) NBDP@CB[8] powder under different treatments.

Figure S11 PXRD patterns of CB[8] powder under different treatments.

Figure S12 Normalized PL spectra of NBDP-O and NBDP-G. Insets: Fluorescence images of NBDP-O and NBDP-G under UV light (365 nm).

Figure S13 Slip angles of adjacent molecules in NBDP-O and NBDP-G and NBDP dimer in CB[8]·NBDP₂.

Figure S14 π - π stacking and intermolecular C-H...N, C-H...O interactions in NBDP-O.

Figure S15 Intermolecular C-H···O and O-H···O interactions in NBDP-O.

Figure S16 π - π stacking and multiple kinds of intermolecular C-H···O interactions in NBDP-G.

Figure S17 C-H··· π and intermolecular C-H···O interactions in NBDP-G.

Figure S18 Normalized fluorescence spectra of NBDP-G and NBDP-O crystals before and after grinding.

Figure S19 Powder X-ray diffraction (PXRD) patterns of NBDP powder, NBDP-O and NBDP-G crystal (simulated from crystal structure).

Figure S20 X-ray crystal structure of CB[8]·NBDP₂.

Figure S21 Intermolecular C-H…O interactions between NBDP and CB[8] host of the CB[8]·NBDP₂ neighbors.

Figure S22 Molecular packing of CB[8]·NBDP₂ complexes.

Figure S23 Fluorescence spectra of CB[8]·NBDP₂ crystal. Insets: Fluorescence images of CB[8]·NBDP₂ crystal under UV light (365 nm).

Figure S24 Normalized fluorescence spectra of CB[8]·NBDP₂ crystal under different treatments.

Figure S27 EI/MS spectra of NBDP.

Table S2 Th	e main crysta	llographic param	neters of NBD-O
-------------	---------------	------------------	-----------------

Identification code	NBD-O
Empirical formula	$C_{11}H_8N_4O_5$
Formula weight	276.21
Temperature/K	296.15
Crystal system	orthorhombic
Space group	Pbca
a/Å	13.774(2)
b/Å	6.9990(11)
c/Å	23.662(4)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	2281.1(6)
Z	8
$\rho_{calc}g/cm^3$	1.609
µ/mm⁻¹	0.131
F(000)	1136.0
Crystal size/mm ³	0.3 × 0.2 × 0.1
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	4.538 to 60.87
Index ranges	-13 ≤ h ≤ 19, -9 ≤ k ≤ 9, -33 ≤ l ≤ 33
Reflections collected	16732
Independent reflections	3339 [$R_{int} = 0.0265, R_{sigma} = 0.0206$]
Data/restraints/parameters	3339/0/184
Goodness-of-fit on F ²	1.041
Final R indexes [I>=2σ (I)]	$R_1 = 0.0424$, $wR_2 = 0.1368$

Final R indexes [all data]	R ₁ = 0.0639, wR ₂ = 0.1533
Largest diff. peak/hole / e Å ⁻³	0.25/-0.18

Table S3 The main crystallographic parameters of NBD-G		
Identification code	NBD-G	
Empirical formula	$C_{11}H_6N_4O_4$	
Formula weight	258.20	
Temperature/K	296.15	
Crystal system	orthorhombic	
Space group	Pbca	
a/Å	8.7743(5)	
b/Å	11.8277(7)	
c/Å	21.4669(13)	
α/°	90	
β/°	90	
γ/°	90	
Volume/Å ³	2227.8(2)	
Z	8	
ρ _{calc} g/cm ³	1.540	
µ/mm⁻¹	0.122	
F(000)	1056.0	
Crystal size/mm ³	0.1 × 0.05 × 0.05	
Radiation	ΜοΚα (λ = 0.71073)	
2O range for data collection/°	3.794 to 55.194	
Index ranges	-6 ≤ h ≤ 11, -15 ≤ k ≤ 13, -19 ≤ l ≤ 26	
Reflections collected	9910	
Independent reflections	2319 [$R_{int} = 0.0245, R_{sigma} = 0.0281$]	
Data/restraints/parameters	2319/0/173	
Goodness-of-fit on F ²	1.004	
Final R indexes [I>=2σ (I)]	$R_1 = 0.0406, wR_2 = 0.0937$	
Final R indexes [all data]	$R_1 = 0.0831$, $wR_2 = 0.1123$	
Largest diff. peak/hole / e Å ⁻³	0.14/-0.15	

Table S4 The main crystallographic parameters of $\ensuremath{\mathsf{CB[8]}\xspace{-}\mathsf{NBDP}_2}$

compound	CB[8]•NBDP ₂
Empirical formula	$C_{70}H_{60}N_{40}O_{24}$
Formula weight	1845.58
Temperature/K	296.15
Crystal system	monoclinic
Space group	P21/c
a/Å	13.794(3)
b/Å	19.827(5)
c/Å	16.822(4)
α/°	90
β/°	104.599(7)
γ/°	90
Volume/Å ³	4452.1(17)
Z	2
$\rho_{calc}g/cm^3$	1.377
µ/mm ⁻¹	0.108
F(000)	1904.0
Crystal size/mm ³	0.1 × 0.1 × 0.1
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	4.108 to 50
Index ranges	-16 ≤ h ≤ 15, -23 ≤ k ≤ 23, -19 ≤ l ≤ 20

Reflections collected	27742
Independent reflections	7783 [$R_{int} = 0.0938$, $R_{sigma} = 0.0955$]
Data/restraints/parameters	7783/0/604
Goodness-of-fit on F ²	1.114
Final R indexes [I>=2σ (I)]	$R_1 = 0.1090, wR_2 = 0.2652$
Final R indexes [all data]	$R_1 = 0.1385, wR_2 = 0.2868$
Largest diff. peak/hole / e Å ⁻³	0.57/-0.48

References

- A. Day, A.P. Arnold, R.J. Blanch and B. Snushall, J. Org. Chem. 2001, 66, 8094–8100
 T. Lu and F. Chen, J. Comput. Chem. 2012, 33, 580-592
 W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graphics Modell. 1996, 14, 33-38 [1]
- [2] [3]