Supporting information

Impact of cation substitution in all solution-processed Cu₂(Cd,Zn)SnS₄ superstrate solar cells

David Payno,^a Samrana Kazim,^{a,b} and Shahzada Ahmad ^{a,b}

^aBCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain

^bIKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain

*Email: shahzada.ahmad@bcmaterials.net

	CZTS	CCTS	CdS	ZnS	TiO ₂	FTO
Thickness (nm)	600	600	50	50	150	150
Dielectric constant (ϵ_0 / ϵ)	7	7	10	9	30	9
$E_{\rm g}({\rm eV})$	1.5	1.4	2.42	3.6	3.2	3.8
Electron affinity (eV)	4.2	4.47	4.4	3.5	4	4.1
$N_{\rm c}/N_{ m v}$	0.0255	0.0255	0.0112	0.044	50	1.2
n_i (cm ⁻³)	1.8 106	2.3 109	0.182	0.01	1.44 10-5	3.6 10-13
Doping concentration (cm ⁻³)	10^{16} - 10^{18}	1016	10^{17}	10^{18}	1017	2 1019
References	1–3	1	1,3,4	3,4	5	5

Table S1. Material	properties used	for the calculation	of the bands.
--------------------	-----------------	---------------------	---------------

	-			
	Cd/(Cd+Zn)	Cu/(Cd+Zn+Sn)	(Cd+Zn)/Sn	S/Metals
Stoichiometry	-	1	1	1
Precursor solution	х	0.8	0.8	5
CZTS	0.00	0.79	1.24	0.91
x=0	0.35	0.64	1.98	1.00
x=0.25	0.53	0.64	2.02	1.07
x=0.5	0.63	0.63	2.00	1.03
x=0.75	0.82	0.78	1.94	1.07
x=1	1.00	0.75	1.57	1.04

Table S2. Compositional ratios of CCZTS thin films.

Figure S1. A microscope image of a carbon dot electrode, which defines the cell area.

Figure S2. SEM top and cross-sectional view of the samples a), d) CZTS, b), e) x = 0.25 and c), f) x = 0.5 respectively. In the inset, a histogram distribution and average of the grain size. The films are marked as blue (FTO), green (planar TiO₂), yellow (mesoporous TiO₂ + (Cd,Zn)S), and red (CCZTS).

Figure S3. a) Transmittance spectra, and b) Tauc plot with band gap calculation of samples with different absorber thickness, prepared with an x=0.75 solution.

re S4. Mott-Schottky plots with a linear regression were used to calculate the built-in potential. The measurements were obtained under dark, using a 20 mV AC at 100 kHz.

Figure S5. Junction formed between the absorber layer and TiO_2 . It consists of a spike-like junction, with a small barrier for CZTS than CCTS (both with doping of 10^{16} cm⁻³).

Figure S6. PV parameters extracted from the *J-V* curve under the illumination of the sequence were prepared to test the temperature stability. The samples were prepared with the x = 0.75 solutions, with an absorber thickness of a) 300 nm, and b) 1000 nm.

Figure S7. *J-V* curves of the samples, used for calibration of the halogen lamp under 1 Sun, under halogen illumination, and after the light stability test. The *J-V* points measured during the stability test are also marked. The slight variations between the curve at 1 Sun and the curve used for calibration, are associated with the different light spectrum, with a higher intensity of the infrared in the halogen lamp.

Supporting references:

1 Z. K. Yuan, S. Chen, H. Xiang, X. G. Gong, A. Walsh, J. S. Park, I. Repins and S. H. Wei, *Adv. Funct. Mater.*, 2015, **25**, 6733–6743.

2 Nisika, K. Kaur, K. Arora, A. H. Chowdhury, B. Bahrami, Q. Qiao and M. Kumar, J. Appl. Phys., 2019, **126**, 193104.

- 3 U. Saha and M. K. Alam, RSC Adv., 2018, 8, 4905–4913.
- 4 R. R. Kabulov, Appl. Sol. Energy, 2021, 56, 383-387.
- 5 G. Haidari, Appl. Opt., 2019, 58, 7006-7013.