Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Structure-property relationships in normal and mixed dithienylethenes – polyoxometalates supramolecular assemblies with fast solid-state photochromic properties

Oleh Stetsiuk,^{ab} Patricia Bolle,^b Marie Cordier,^a Julien Boixel^{a*} and Rémi Dessapt^{b*}

^aUniv Rennes, CNRS, ISCR - UMR6226, F-35000, Rennes, France
^bUniversité de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
E-mails: remi.dessapt@cnrs-imn.fr and julien.boixel@univ-rennes1.fr

ELECTRONIC SUPPORTING INFORMATION

Content

S1. Methods	2
S2. Procedures for the synthesis of the DTEs and assemblies	4
S3. NMR and mass spectra	7
S4. FT-IR spectra	10
S5. Crystallographic data	13
S6. Thermogravimetry curves	23
S7. K-M reflectivity spectra	24
References	27

S1. Methods

General: All organic syntheses were performed using Schlenk techniques under argon atmosphere. All solvents were dried and purified by standard procedures. Precursor **A** and **B**,^{1,2} **1**,³ (NBu₄)₄[α -Mo₈O₂₆],⁴ (NBu₄)₃[PMo₁₂O₄₀]⁵ and (NBu₄)₃[PW₁₂O₄₀]⁶ were synthesized according to the reported procedures. ((CH₃CH₂)₂NH₂)₂(NH₄)₂[Mo₈O₂₆] which was used as an optical reference of the β-[Mo₈O₂₆]⁴⁻ unit was synthesized as previously described.⁷ NMR spectra were recorded on Bruker, AV 400 spectrometer. ¹H, ¹⁹F and ¹³C chemical shifts are determined by reference to residual solvent signals. High Resolution Mass Spectra were recorded on a Bruker maXis+ (ESI-QTOF). Elemental Analysis were performed at the CRMPO (Centre de Mesures Physiques de l'Ouest) in Rennes.

UV-Vis absorption:

Solution. UV/Vis absorption spectra were recorded in pure dichloromethane using Specord 205 UV-Vis-NIR spectrophotometer in quartz cuvettes of 1 cm pathlength, against a reference of pure dichloromethane contained within a matched cuvette.

Solid state. Solid-state optical properties were investigated by Diffuse Reflectance Spectroscopy of microcrystalline powders. Diffuse reflectance spectra were collected at room temperature on a finely ground sample with a Perkin-Elmer Lambda 1050 spectrometer equipped with a 150 mm diameter integrating sphere coated with Spectralon®, a highly reflecting fluoropolymer. Diffuse reflectance was measured from 250 to 1000 nm with a 2 nm step using Spectralon® as reference (100% reflectance). The reflectance data were treated by a Kubelka-Munk transformation⁸ to better determine the absorption thresholds. The photocoloration and fading kinetics were quantified by monitoring the temporal evolution of the photogenerated absorption $Abs^{\lambda max}(t)$ defined as $Abs^{\lambda max}(t) = -log(R^{\lambda max}(t)/R^{\lambda max}(0))$, where $R^{\lambda max}(t)$ and $R^{\lambda max}(0)$ are the reflectivities at the time t and at t = 0, respectively. For the coloration kinetics, the samples were irradiated with a Fisher Bioblock labosi UV lamp (λ_{ex} = 365 nm, P = 6W) at a distance of 50 mm. Abs^{λ max}(t) vs. t plots have been fitted according to a biexponential rate law Abs^{λ max}(t) = (A₁ + A₂) - A₁exp(-k^c₁t) - A₂exp(-k^c₂t), with k^c₁ and k^c₂ the extracted coloration rate constants, and A1 and A2 the associated amplitudes of absorption. For the bleaching processes, the samples were first irradiated under 365 nm-UV excitation until the photoinduced absorptions reach saturation. Then, the compounds were put under Thorlabs LED Array light sources (590 nm - 1.4 W/cm² or 630 nm - 2.4 W/cm²) at a distance of 100 mm. The bleaching kinetics were determined at room temperature by monitoring the temporal decays of Abs^{λ max}(*t*) of samples once irradiated. Abs^{λ max}(*t*) *vs. t* plots have been fitted according to a biexponential rate law Abs^{λ max}(*t*) = (A₀ - A₁ - A₂) + A₁exp(-k^f₁*t*) + A₂exp(-k^f₂*t*), with k^f₁ and k^f₂ the extracted fading rate constants, A₁ and A₂ the associated amplitudes of absorption, and A₀ the amplitude of absorption at t = 0.

Photoisomerization experiments in solution have been made using a LS series Light Source of ABET technologies, Inc (150 W xenon lamp), with single wavelength light filters "350FS 10-25" or "450FS 40-25" for ring-closure and "650FS 10-25" for cycloreversion. Irradiations for ¹H NMR experiments have been made using a Rayonet® with 350 nm light emitting lamps. Irradiation for ¹H NMR experiments have been made using a Rayonet® with 350 nm emitting lamps.

FT-IR: FT-IR spectra were recorded in the 4000-400 cm⁻¹ range in KBr pellets on BRUKER Vertex equipped with a computer control using the OPUS software.

Thermogravimetry: Thermogravimetric analysis (TGA) were performed by flowing dry argon with a heating and cooling rate of 5 °C min⁻¹ on a SETARAM TG-DSC 111 between 20 and 800 °C.

X-ray crystallography: For 2-Mo₈, X-ray diffraction measurements were performed on a Bruker Kappa CCD diffractometer, operating with a Mo-K α ($\lambda = 0.71073$ Å) X-ray tube with a graphite monochromator. For the other compounds, X-ray single crystal diffraction data were collected on D8 VENTURE Bruker AXS diffractometer equipped with a (CMOS) PHOTON 100 detector, Mo-Ka radiation ($\lambda = 0.71073$ Å, multilayer monochromator). The structures were solved by direct methods SHELXS-2016 and refined on F² by full matrix least-squares techniques using the SHELX-2016 program⁹ within WINGX.¹⁰ The hydrogen atoms were included in the geometrically calculated position and refined riding on the corresponding atom. The contribution of the disordered solvents to the calculated structure factors was estimated following the BYPASS algorithm, implemented as the SQUEEZE option in PLATON.¹¹ A new data set, free of solvent contribution, was then used in the final refinement. Crystallographic data for the reported structures can be obtained by quoting the deposition numbers CCDC 2057188 (2), 2057190 ([2]OTf), 2057191 (2-Mo₈), 2057189 (1-PMo₁₂), 2057192 (2-PMo₁₂) These data can be obtained free of charge via 2057193 $(2-PW_{12}).$ and www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, U.K.; email deposit@ccdc.cam.ac.uk).

S2. Procedures for the synthesis of the DTEs and assemblies.

Fig. S1 Synthetic route for [2]OTf.

Synthesis of 2. To 100 mL freshly distilled THF solution containing compound A (1.17 g, 4.6 mmol) was added 2 mL nBuLi hexane solution (2.5 M, 5.0 mmol) under argon atmosphere at -78°C, and the solution was stirred for 1h at low temperature. Precursor B (1.4 g, 4.6 mmol) in 10 mL of freshly distilled THF was slowly added to the reaction mixture at -78°C, and the mixture was stirred for 3h at this temperature. The reaction temperature rose slowly ambient overnight. The product was extracted with two 100 mL portion of diethyl ether. The combined organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated. The residue was purified by column chromatography on silica gel with EtOAc/DMC, 3/1 as eluent to give the desired compound as dark green solid (0.85 g, 40 %). Single-crystals suitable for Xray diffraction analysis were obtained by slow evaporation of the hexane solution of 2. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 8.60 \text{ (d, } J = 4.7 \text{ Hz}, 2\text{H}), 7.44 \text{ (s, 1H)}, 7.41 \text{ (d, } J = 5.9 \text{ Hz}, 2\text{H}), 6.53 \text{ (s, 1H)}, 7.41 \text{ (d, } J = 5.9 \text{ Hz}, 2\text{H}), 6.53 \text{ (s, 2H)}, 6.53 \text{ (s, 2$ 1H), 2.44 (s, 3H), 2.02 (s, 3H), 1.73 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -109.51 (m, 4F), -133.57 (m, 2F). HRMS-ESI. Calcd for C₂₁H₁₆NS₂F₆ [M+H⁺], z=1, m/z: 460.0623. Found: 460.0624 (<1 ppm). **E.A.** Anal. calc. for C₂₁H₁₅NF₆S₂: C 54.90, H 3.29, N 3.05, S 13.96 %; Found: C 55.45, H 3.59, N 3.15 %, S 13.76. The compound is soluble in most common organic solvents, insoluble in water.

Synthesis of [2]OTf. To 30 mL of dry DCM solution containing 2 (740 mg, 1.6 mmol) was added drop by drop methyl trifluoromethanesulfonate MeOTf (0.46 mL, 4 mmol) under argon atmosphere at room temperature, and the solution was stirred during 48 h. Brown precipitate formed during the reaction was filtered off, washed with pentane and dried in air (0.80 g, 81 %). Single-crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the methanol solution of [2]OTf. ¹H NMR (400 MHz, MeOD) δ 8.74 (d, J = 6.8 Hz, 2H), 8.24 (d, J = 7.0 Hz, 2H) 8.11 (s, 1H), 6.66 (s, 1H), 4.32 (s, 3H), 2.45 (s, 3H), 2.12 (s, 3H), 1.78 (s, 3H). ¹⁹F NMR (376 MHz, MeOD) δ -80.11 (s, 3F), -111.10 (m, 2F), -11.38 (m, 2F), -133.37

(m, 2F). **HRMS-ESI**. Calcd for $C_{22}H_{18}NS_2F_6$ [M⁺], z=1, m/z: 474.0779. Found: 474.0777 (<1 ppm). **FT-IR, KBr**, cm⁻¹ 3110 (w), 3050 (m), 1640 (s), 1550 (m), 1520 (m), 1474 (w), 1445 (m), 1336 (m), 1265 (s), 1194 (m), 1154 (m), 1121 (s), 1058 (m), 1030 (s), 985 (s), 897 (m), 874 (m), 840 (s), 787 (m), 756 (w), 637 (s), 517 (m), 478 (m). ESI-HRMS. Calcd for $C_{22}H_{18}NS_2F_6$, z=1, m/z: 474.07794. Found: 474.0777 (1 ppm). **E.A.** Anal. calc. for $C_{23}H_{18}NO_3F_9S_3$: C 44.30, H 2.91, N 2.25, S 15.43. Found: C 44.15, H 2.98, N 2.19, S 15.05 %. The compound is soluble in DMSO, DMF, ANC, sparingly soluble in DCM, insoluble in water.

Synthesis of 1-PMo₁₂. (NBu₄)₃[PMo₁₂O₄₀] (0.054 g, $2.1 \cdot 10^{-5}$ mol) was dissolved in 5 mL of acetonitrile. Then the solution of [1]OTf (0.04 g, $6.4 \cdot 10^{-5}$ mol) in 4 mL of DMF was added and the mixture was stirred at room temperature for 1 h. Single-crystals suitable for X-ray diffraction analysis were obtained by vapor diffusion of diethyl ether into the solution in few days (0.035 g, 74 % in Mo). **FT-IR, KBr**, cm⁻¹ 3100 (w), 2969 (w), 1635 (s), 1555 (m), 1510 (m), 1475 (w), 1445 (m), 1336 (m), 1274 (s), 1223 (w), 1195 (s), 1144 (m), 1113 (m), 1088 (w), 1060 (s), 956 (s), 878 (s), 800 (s), 500 (w), 476 (w). **E.A.** Anal. calc. for C₇₈H₆₉F₁₈N₈O₄₀PS₆Mo₁₂: C 26.96, H 2.00, N 3.22, S 5.54 %; Found: C 26.90, H 2.30, N 3.02, S 5.10 %. The compound is soluble in DMSO, DMF, ACN, insoluble in water.

Synthesis of 2-PMo₁₂. **2-PMo**₁₂ was prepared in a way similar to that of **1-PMo**₁₂, but using [2]OTf (0.04 g, $6.4 \cdot 10^{-5}$ mol). Single-crystals suitable for X-ray diffraction analysis were obtained by vapor diffusion of diethyl ether into the solution in few days (0.035 g, 74 % in Mo). **FT-IR, KBr**, cm⁻¹ 3100 (w), 2969 (w), 1637 (s), 1553 (m), 1513 (m), 1474 (w), 1443 (m), 1338 (m), 1274 (s), 1220 (w), 1194 (s), 1142 (m), 1113 (m), 1088 (w), 1060 (s), 956 (s), 878 (s), 800 (s), 500 (w), 476 (w). **E.A.** Anal. calc. for C₇₈H₆₉F₁₈N₈O₄₀PS₆Mo₁₂: C 26.96, H 2.00, N 3.22, S 5.54 %; Found: C 26.87, H 2.33, N 3.15, S 5.04 %. The compound is soluble in DMSO, DMF, ACN, insoluble in water.

Synthesis of 1-PW₁₂. **1-PW**₁₂ was prepared in a way similar to that of **1-PMo**₁₂, but using $(NBu_4)_3[PW_{12}O_{40}]$ (0.04 g, 1.3·10⁻⁵ mol) and **[1]OTf** (0.025 g, 4.0·10⁻⁵ mol). The polycrystalline powder was obtained by vapor diffusion of diethyl ether into the solution in few days (0.025 g, 42 % in W). **FT-IR**, KBr, cm⁻¹ 2970 (w), 1640 (m), 1556 (w), 1515 (w), 1475 (w), 1440 (w), 1337 (w), 1274 (m), 1195 (m), 1142 (w), 1113 (w), 1078 (s), 1049 (w), 979 (s), 895 (m), 812 (s), 517 (w). **E.A.** Anal. calc. for $C_{78}H_{69}F_{18}N_8O_{40}PS_6W_{12}$: C 20.68, H 1.54, N 2.47,

S 4.27 %. Found: C 20.55, H 1.77, N 2.35, S 4.15 %. The compound is soluble in DMSO, DMF, ACN, insoluble in water.

Synthesis of 2-PW₁₂. 2-PW₁₂ was prepared in a way similar to that of 1-PW₁₂, but using [2]OTf (0.025 g, $4.0 \cdot 10^{-5}$ mol). Single-crystals suitable for X-ray diffraction analysis were obtained by vapor diffusion of diethyl ether into the solution in few days (0.026 g, 44 % in W). FT-IR, KBr, cm⁻¹ 2969 (w), 1641 (m), 1555 (w), 1513 (w), 1472 (w), 1439 (w), 1338 (w), 1274 (m), 1196 (m), 1142 (w), 1113 (w), 1078 (s), 1049 (w), 979 (s), 895 (m), 812 (s), 517 (w). E.A. Anal. calc. for C₇₈H₆₉F₁₈N₈O₄₀PS₆W₁₂: C 20.68, H 1.54, N 2.47, S 4.27 %. Found: C 20.44, H 1.83, N 2.85, S 4.35 %. The compound is soluble in DMSO, DMF, ACN, insoluble in water.

Synthesis of 2-Mo₈. (NBu₄)₄[α -Mo₈O₂₆] (0.05 g, 2.3·10⁻⁵ mol) was dissolved in 5 mL of DMF. Then the solution of [2]OTf (0.06 g, 9.5·10⁻⁵ mol) in 3 mL of DMF was added and the mixture was stirred at room temperature for 1 h. Single-crystals suitable for X-ray diffraction analysis were obtained by the vapour diffusion of diethyl ether into the solution in few days (0.045 g, 58 % in Mo). FT-IR, KBr, cm⁻¹ 3120 (w), 3050 (m), 1672 (m), 1641 (s), 1550 (m), 1515 (w), 1475 (m), 1440 (m), 1384 (w), 1342 (m), 1274 (s), 1227 (w), 1192 (s), 1128 (s), 1058 (s), 989 (s), 946 (s), 911 (s), 845 (m), 713 (m), 666 (m), 556 (w), 480 (w). Anal. calc. for C₁₀₀H₉₆F₂₄Mo₈N₈O₃₀S₈: C 35.64, H 2.87, N 3.33, S 7.61 %; Found: C 35.55, H 2.75, N 3.13, S 7.49 %. The compound is soluble in DMSO, DMF, insoluble in water.

S3. NMR and mass spectra

Fig. S2 top: ¹H NMR and bottom left: ¹⁹F NMR spectra of 2 in CDCl₃. bottom right: ESI-HRMS spectra of 2.

Fig. S3 *top*: ¹H NMR, *bottom left*: ¹⁹F NMR and *bottom right*: ¹³C NMR spectra of **[2]OTf** in CD₃OD.

Figure S4. ESI-HRMS spectra of 2⁺.

S4. FT-IR spectra

Fig. S5 FT-IR spectrum of [2]OTf.

Fig. S7 FT-IR spectra of $1-PW_{12}$ and $2-PW_{12}$.

Fig. S8 FT-IR spectra of 1-PMo₁₂ and 2-PMo₁₂.

S5. Crystallographic data

Fig. S9 Crystal structure of 2 with atom labelling (top) and intermolecular H-bonds (bottom) displayed as green dotted lines.

Compound	2	[2]OTf	1-PM0 ₁₂	2-PM0 ₁₂	2-PW ₁₂	2-Mo ₈
Formula	$C_{21}H_{15}F_6NS_2$	C ₂₃ H ₁₈ F ₉ NO ₃ S ₃	$C_{68}H_{57}F_{18}Mo_{12}N_4O_{40}PS_6$	$C_{68}H_{57}F_{18}Mo_{12}N_4O_{40}PS_6$	$C_{70}H_{60}F_{18}N_5O_{40}PS_6W_{12}$	$C_{100}H_{96}F_{24}Mo_8N_8O_30S_8$
M [g·mol ^{−1}]	459.46	623.56	3286.78	3286.78	4382.76	3369.84
Crystal system	monoclinic	monoclinic	triclinic	triclinic	triclinic	triclinic
Space group	$P2_{1}/c$	$P2_{1}/c$	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
[<i>a</i> [Å]	14.2422(13)	8.7267(5)	11.733(4)	11.6948(9)	11.7500(12)	10.3229(11)
b [Å]	8.7585(9)	14.2672(9)	18.080(5)	18.4172(15)	18.4870(19)	11.421(2)
c [Å]	15.9650(18)	21.1854(14)	25.198(7)	25.2352(19)	25.300(2)	27.107(5)
α[]	90	90	75.116(9)	75.004(3)	74.730(4)	89.39(2)
β[]	97.351(4)	94.306(3)	79.017(10)	80.190(3)	80.001(4)	84.551(12)
γ[]	90	90	84.375(13)	84.420(3)	84.034(4)	83.976(15)
V [Å ^{3]}	1975.1(4)	2630.3(3)	5065(3)	5165.4(7)	5211.4(9)	3163.8(9)
Ζ	4	4	2	2	2	1
ρ_{calcd} [g/cm ³]	1.545	1.575	2.155	2.113	2.793	1.769
$\mu [mm^{-1}]$	0.333	0.373	1.687	1.654	13.431	1.006
F(000)	936	1264	3180	3180	3992	1672
Т [К]	150(2)	296.15	150	150	150	293(2)
$2\Theta_{\rm max}$	55	54	51	51	51	52
R _{int}	0.0388	0.0363	0.0908	0.1223	0.0512	0.0666
$R_1[I > 2\sigma(I)]$	0.0385	0.0613	0.0606	0.0898	0.0601	0.0640
wR_2 (all data)	0.0960	0.1826	0.1765	0.2217	0.1493	0.1812
G.O.F.	1.064	1.031	0.997	1.075	1.083	1.004
Largest	0.353/-0.385	0.463/-0.457	2.691/-1.529	3.582/-2.304	5.152/-4.374	0.772/-0.642
difference						
peak/hole (e Å ⁻³)						
CCDC number	2057188	2057190	2057189	2057192	2057193	2057191

 Table S1 Crystallographic data, details of data collection and structure refinement parameters.

C1—F1	1.3532(17)	C8—S1	1.7337(15)
C1—F2	1.3644(18)	C9—C10	1.498(2)
C1—C5	1.505(2)	C9—S1	1.7200(15)
C1—C2	1.532(2)	C11—C15	1.395(2)
C2—F4	1.3369(18)	C11—C12	1.397(2)
C2—F3	1.3543(19)	C12—C13	1.383(2)
C2—C3	1.533(2)	C13—N1	1.338(2)
C3—F6	1.3550(19)	C14—N1	1.337(2)
C3—F5	1.3562(18)	C14—C15	1.391(2)
C3—C4	1.513(2)	C16—C17	1.384(2)
C4—C5	1.3575(19)	C16—S2	1.7456(15)
C4—C16	1.4547(19)	C17—C18	1.424(2)
C5—C6	1.4646(19)	C17—C21	1.500(2)
C6—C9	1.379(2)	C18—C19	1.361(2)
C6—C7	1.4324(19)	C19—C20	1.507(2)
C7—C8	1.367(2)	C19—S2	1.7179(17)
C8—C11	1.4691(19)		
Table S3 Selected bond leng	gths for [2]OTf.		
C1—C5	1.497(4)	C16—S2	1.734(3)
C1—C2	1.523(5)	C17—C18	1.425(5)
C2—C3	1.520(5)	C17—C21	1.490(5)
C3—C4	1.501(5)	C18—C19	1.353(6)
C4—C5	1.333(4)	C19—C20	1.502(5)
C4—C16	1.462(4)	C19—S2	1.715(4)
С5—С6	1.472(4)	C22—F8	1.271(6)
C6—C9	1.375(4)	C22—F7	1.306(5)
C6—C7	1.414(4)	C22—F9	1.308(6)
С7—С8	1.369(4)	C22—S3	1.836(5)
C8—C11	1.453(4)	C24—N1	1.471(4)
C8—S1	1.723(3)	F1—C1	1.342(4)
C9—S1	1.705(3)	F2—C1	1.363(4)
C10—C9	1.502(5)	F3—C2	1.339(4)
C11—C12	1.395(4)	F4—C2	1.326(4)
C11—C15	1.397(4)	F5A—C3	1.338(8)
C12—C13	1.362(5)	F6—C3	1.370(5)
C13—N1	1.347(4)	O1—S3	1.426(4)
C14—N1	1.336(4)	O2—S3	1.404(3)
C14—C15	1.362(5)	O3—S3	1.380(5)
C16—C17	1.371(5)		
able S1 Intermolecular by	drogen bonds for 2		

Table S2 Selected bond lengths for 2.

d(F…H) [Å]	d(A…D) [Å]	∠ (AHD) [°]
$F(3) \cdots H(14) = 2.6268(12)$	$C(14)\cdots F(3) = 3.4136(20)$	140
$F(1)\cdots H(15) = 2.5579(10)$	$C(15)\cdots F(1) = 3.4771(20)$	163
F(6)···H(21B) = 2.5192(10)	$C(21)\cdots F(6) = 3.4540(18)$	159

Fig. S10 Crystal packing of [2]OTf representing the assembly of 2^+ cations into supramolecular ribbons running along the *a*-axis. H atoms were omitted for clarity.

Fig. S11 Crystal packing of **2-Mo**₈ (top) and the closest interanion contacts (red dotted lines) (bottom). (blue octahedra: MoO_6 , red sphere: oxygen, yellow sphere: sulfur, blue sphere: nitrogen, green sphere: fluorine, grey sphere: carbon). H atoms were omitted for clarity.

Fig. S12 Crystal structures of $1-PMo_{12}$ (left) and $2-PMo_{12}$ (right), the POM anions are represented in polyhedral mode (blue octahedra: WO₆, orange tetrahedron: PO₄, red sphere: oxygen, yellow sphere: sulfur, blue sphere: nitrogen, green sphere: fluorine, grey sphere: carbon). H atoms and acetonitrile molecules were omitted for clarity.

Fig. S13 Unit cell of **1-PMo**₁₂ along the *a*-axis (top) and crystal packing showing the π ··· π interactions (red dotted lines) (bottom). H and F atoms were omitted for clarity.

Fig. S14 Unit cell of **2-PMo**₁₂ along the *a*-axis (top) and crystal packing showing the π ··· π interactions (red dotted lines) (bottom). H atoms were omitted for clarity.

Fig. S15 Crystal packing of $1-PMo_{12}$ (top) and the closest interanion contacts (red dotted lines) (bottom).

Fig. S16 Crystal packing of 2-PMo₁₂ (top) and the closest interanion contacts (red dotted lines) (bottom).

Fig. S17 Crystal packing of $2-PW_{12}$ (top) and the closest interanion contacts (red dotted lines) (bottom).

S6. Thermogravimetry curves

Fig. S18 TGA (blue line) and DSC (red line) curves of 2-PMo₁₂.

S7. K-M reflectivity spectra

Fig. S19 Kubelka-Munk transformed reflectivity spectra of [2]OTf at room temperature under UV irradiation ($\lambda_{ex} = 365$ nm), over a period of 60 min.

Fig. S20 Kubelka-Munk transformed reflectivity spectra of (a) [2]OTf, 2-Mo₈ and $((CH_3CH_2)_2NH_2)_2(NH_4)_2[Mo_8O_{26}]$ (Mo₈), (b) [1]OTf, 1-PW₁₂ and H₃[PW₁₂O₄₀] (H₃PW₁₂), and (c) [2]OTf, 2-PW₁₂ and H₃[PW₁₂O₄₀] (H₃PW₁₂).

Fig. S21 Kubelka-Munk transformed reflectivity spectra at room temperature under UV irradiation ($\lambda_{ex} = 365 \text{ nm}$) over a period of 60 min for (a) 2-Mo₈ and (b) 2-PW₁₂, and 30 min for (c) 1-PW₁₂.

Fig. S22 Normalized Kubelka-Munk transformed reflectivity spectra of $((CH_3CH_2)_2NH_2)_2(NH_4)_2[\beta-Mo_8O_{26}]$ (red line), $H_3[PW_{12}O_{40}]$ (blue line) and $H_3[PMo_{12}O_{40}]$ (black line).

References

- 1. H. D. Samachetty, V. Lemieux and N. R. Branda, *Tetrahedron*, 2008, 64, 8292-8300.
- 2. F. Sun, F. Zhang, H. Guo, X. Zhou, R. Wang and F. Zhao, *Tetrahedron*, 2003, **59**, 7615-7621.
- 3. M. Liu, G. Liu and S. Q. Cui, App. Mech. Mater, 2012, 164, 239-242.
- 4. W. G. Klemperer, in *Inorganic Syntheses*, 1990, pp. 74-85.
- 5. M. M. Heravi, R. Motamedi, F. F. Bamoharram and N. Seify, *Catal. Commun.*, 2007, **8**, 1467-1471.
- 6. S. Himeno, M. Takamoto and T. Ueda, J. Electroanal. Chem., 1999, 465, 129-135.
- K. Hakouk, O. Oms, A. Dolbecq, H. El Moll, J. Marrot, M. Evain, F. Molton, C. Duboc, P. Deniard, S. Jobic, P. Mialane and R. Dessapt, *Inorg. Chem*, 2013, 52, 555-557.
- 8. P. Kubelka and F. Munk, Z. Tech. Phys, 1931, 12, 259-274.
- 9. G. Sheldrick, Acta Crystallogr., Sect. C, 2015, 71, 3-8.
- 10. L. Farrugia, J. Appl. Crystallogr., 2012, 45, 849-854.
- 11. A. L. Spek, Acta Crystallogr., Sect. C, 2015, 71, 9-18.