Supplementary Information

Dual-Emission Ratiometric Fluorescent Probe based Lanthanide-Functionalized Hydrogen-Bonded Organic Framework for Visual Detection of Methylamine

Yanhong Liu,^a Xin Xu^a, Haifeng Lu,^{*,b} and Bing Yan^{*,a}

^a School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
 ^b School of Chemistry and Chemical Engineering, Shandong University, South Shanda Road 27, Jinan 250100, P. R. China.

E-mail: lhf@sdu.edu.cn; byan@tongji.edu.cn.

Figure S1. (a) Framework of D-A dual-component Tt-TPA. (b) Emission spectra of Tt-TPA (λ_{ex} = 310 nm).

Figure S2. SEM pictures of Tt-TPA and the corresponding elemental distribution mapping. Scale bars: $25 \mu m$.

Figure S3. EDX spectra of Tt-TPA (a) and Eu@Tt-TPA (b).

Figure S4. XPS spectra of Tt-TPA (red line) and Eu@Tt-TPA (blue line).

Figure S5. Schematic diagram for RTP mechanism: TAD Fassisted energy transfer from Tt to TPA moiety. (ISC: intersystem crossing; RISC: reverse intersystem crossing; TADF: thermally activated delayed fluorescence)

Figure S6. Schematic diagram for TADF-assisted ET and LMCT-induced ET progresses for Eu@Tt-TPA (ISC: intersystem crossing; TADF: thermally activated delayed fluorescence).

Figure S7. (a) Plot of the intensity ratio of I_{425}/I_{615} (Eu@Tt-TPA) vs MA concentration. (b) Calibration curves of Eu@Tt-TPA added MA in aqueous solution with different concentrations (10^{-8} – 10^{-4} M).

Figure S8. (a) Plot of the intensity ratio of I_{425}/I_{615} (Eu@Tt-TPA film) vs MA concentration. (b) Linear relationship between the concentration of MA ($10^{-7}-10^{-4}$ M) and the variation of the ratio under the single excitation of 310 nm.

Figure S9. Photos of Eu@Tt-TPA with MA or a series of aliphatic amines, aniline and ammonia under 310 nm UV-light irradiation. The concentrations of MA and a series of aliphatic amines, aniline and ammonia were 10^{-2} M.

Figure S10. (a) SEM image of Eu@Tt-TPA film. (b) The element content of C (42.35%), N (4.24%), O (45.09%), Eu (0.87%) and Na (7.45%) elements in EDX energy spectrum of Eu@Tt-TPA film.

Figure S11. (a) Time-dependent luminescence intensity of Eu@Tt-TPA film at 615 nm. (b) The luminescence intensity of Eu@Tt-TPA film after four recycles.

Figure S12. Emission spectra (λ_{ex} = 310 nm) of Eu@Tt-TPA film exposure to various concentrations MA.

Figure S13. Photos of Eu@Tt-TPA film after exposure to various concentrations MA $(10^{-7}-10^{-2} \text{ M})$ under 310 nm UV-light irradiation.

Figure S14. PXRD patterns of Eu@Tt-TPA before and after sensing MA.

Figure S15. Luminescence decay curves of Eu@Tt-TPA (a) and Eu@Tt-TPA + MA (b) $(\lambda_{ex} = 310 \text{ nm}, \lambda_{em} = 615 \text{ nm}).$

Figure S16. (a) Excitation spectra of H₂TPA (λ_{em} = 430 nm). (b) Excitation spectrum of Tt (λ_{em} = 369 nm). (c) Excitation and emission spectra of MA. (d) Emission spectrum of H₂TPA and H₂TPA +MA (λ_{ex} = 369 nm).

Figure S17. (a) Excitation spectra of H₂TPA (λ_{em} = 430 nm). (b) Excitation spectrum of Tt (λ_{em} = 369 nm).

Table S1. Th	ne weight percentage o	of all elements in Tt-TP.	A and Eu@Tt-TPA	determined
by EDX.				

Element	Percentage by weight			
Element	Tt-TPA	Eu@Tt-TPA		
С	38.77	40.76		
Ν	39.78	33.92		
0	21.45	19.29		
Eu		6.04		

Table S2. Summary of excitation transitions and experimental energy gaps of Tt, MA, H_2 TPA and Eu³⁺.

	Transitions	Wavelength (nm)	Energy gap (eV)
Tt	$S_0 \rightarrow S_n$	311	3.99
MA	$S_0 \rightarrow S_n$	340	3.65
H ₂ TPA	$S_0 \rightarrow S_n$	368	3.37
	${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{0}$	579	2.14
	${}^{5}D_{0} \rightarrow {}^{7}F_{1}$	592	2.09
Eu ³⁺	${}^{5}D_{0} \rightarrow {}^{7}F_{2}$	615	2.02
	${}^{5}D_{0} \rightarrow {}^{7}F_{3}$	652	1.91
	${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{4}$	696	1.78

Substrate	Transitions	Wavelength (nm)	Energy gap (eV)
ammonia	$S_0 \rightarrow S_n$	308	4.03
ethylamine	$S_0 \rightarrow S_n$	311	3.99
aniline	$S_0 \rightarrow S_n$	324	3.83
diethylamine	$S_0 \rightarrow S_n$	348	3.56
triethylamine	$S_0 \rightarrow S_n$	351	3.53
<i>n</i> -hexylamine	$S_0 \rightarrow S_n$	360	3.44
ethylenediamine	$S_0 \rightarrow S_n$	372	3.33
propylamine	$S_0 \rightarrow S_n$	375	3.31

 Table S3.
 Summary of excitation transitions and experimental energy gaps of substrate.

Table	S4.	Molecular	size	of	amine	and	ammonia
-------	-----	-----------	------	----	-------	-----	---------

Entry	Substrate	Molecular size	Entry	Substrate	Molecular size
1	ammonia	1.666 Å	6	diethylamine	6.635 Å
2	methylamine	2.992 Å	7	<i>n</i> -hexylamine	9.334 Å
3	ethylamine	4.237 Å	8	triethylamine	6.592 Å
4	ethylenediamine	5.387 Å	9	aniline	4.891 Å
5	propylamine	5.523 A			

Comula	MA added	MA found	Recovery	R.S.D. (n = 3)
Sample	(µmol/L)	(µmol/L)	(%)	(%)
	0.1	0.104	104	2.25
Tap water	5	4.869	97.38	3.48
	10	10.281	102.81	1.89
	0.1	0.096	96	2.18
River water	5	5.121	102.42	1.92
	10	10.513	105.13	4.02

Table S5. Determination of MA in water samples.