Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information for:

Highly Efficient Hybrid Light-Emitting Transistors incorporating MoO_x/Ag/MoO_x Semi-Transparent Electrodes

Yu Jung Park,^a Ae Ran Song,^b Kwun-Bum Chung,^b Tae-Youb Kim,^c Bright Walker*^d and Jung Hwa Seo*^a

^aDepartment of Semiconductors, Dong-A University, Busan, 49315, Republic of Korea

^bDivision of Physics and Semiconductor Science, Dongguk University, Seoul, 04620, Republic of Korea

^cReality Devices Research Division, Electronics and Telecommunications Research Institute, Daejeon, 34129, Republic of Korea.

^dDepartment of Chemistry, Kyung Hee University, Seoul, 02447, Republic of Korea

1. Electrical and optical output characteristics of HLETs with OMO electrodes

Figure S1. Electrical and optical output characteristics of HLETs with OMO electrodes as a function of Ag thicknesses (60, 30, 25, 20 and 15 nm, respectively.)