1 Supporting Information

2 Paper-based Flexible Strain and Pressure Sensor with Enhanced Mechanical

- 3 Strength and Super-hydrophobicity that can Work Under Water
- 4 Hanbin Liu^{a*}, Wei Wang^a, Huacui Xiang^a, Haiwei Wu^a, Zhijian Li^a, Hongwei Zhou^b,
- 5 Wei Huang^{c*}
- 6 a Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development,
- 7 College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science &
 8 Technology, Xi'an, P.R. China (710021)
- 8 Technology, X1'an, P.R. China (710021)
- 9 ^b School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, P. R. China

10 (710021)

- 11 ° Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE),
- 12 Northwestern Polytechnical University, Xi'an, China (710072)

13

- ^{*} H. Liu: liuhanbin@sust.edu.cn; hanbin_liu@foxmail.com.
- 15 W. Huang: iamwhuang@nwpu.edu.cn

- 17 **Table S1.** Comparisons of the reported various paper-based sensors with this work.
- 18 Figure S1. Structure diagram of the paper-based sensor for strain and pressure 19 detection.
- 20 Figure S2. SEM images of (a) graphite nanoplates and (b) graphite powders.
- 21 Figure S3. FESEM images of graphite nanoplates.
- 22 Figure S4. AFM image of graphite nanoplates with corresponding height profile.
- 23 Figure S5. 3D images of the composite paper (a) before and (b) after coating AKD.
- 24 Figure S6. Schematic model for calculation of the strain under bending. The sagitta
- 25 was measured before the calculation.
- Figure S7. Illustration of the sensor under strain with different content of graphite nanoplates.
- 28 Figure S8. SEM images of the composite paper with graphite nanoplates content of (a,
- 29 d) 15 wt%, (b, e) 22 wt% and (c, f) 30 wt%.
- 30 Figure S9. a) Stress-strain curves of the composite paper with different content of
- 31 graphite nanoplates. b) Stress-strain curves of the composite paper with different
- 32 content of CNF.
- 33 Figure S10. (a) Resistance change ratio under various bending strains of the paper-
- 34 based sensor with different coating times of AKD, and (b) the corresponding GF. Cross-
- 35 section SEM images of the composite paper (c) before and (d) after coating AKD.
- 36 Figure S11. The water contact angle of the composite paper with different graphite
- 37 nanoplates content after two times of AKD coating.
- 38 Figure S12. Stress-strain curves of the composite paper with and without coating AKD.
- 39 Figure S13. Resistance change ratio as function of the bending strain applied in normal
- 40 circumstance (RH=27%), in high humidity (RH=80%) and under water.
- 41 Figure S14. Illustration of the testing setup of the sensor for 1000 bending-unbending
- 42 cycles under water.

Conductive	Main methods	Response time	Gauge factor	Super-	Work under Water	encapsulation	Publication	Referenc
materials		(s)		hydrophobicity			year	e
Graphite	pencil drawn	0.11	536.6	no	Not mentioned	Not mentioned	2015	1
AgNWs/LDHs	screen printing	0.12	Not mentioned	no	Not mentioned	Not mentioned	2015	2
Graphite	meyer-rod	0.0196	804.9	no	Not mentioned	Not mentioned	2016	3
	coating							
CB	dip-coating	0.24	4.3	no	Not mentioned	Not mentioned	2017	4
rGO	drop-casting	Not mentioned	66.6	no	Not mentioned	Not mentioned	2017	5
CB	screen-printing	0.000625	647	no	Not mentioned	Not mentioned	2017	6
Graphite/CB	papermaking	0.36	27	no	Not mentioned	Not mentioned	2018	7
ITO NPs	hand-painting	Not mentioned	41.98	no	Not mentioned	Not mentioned	2019	8
CB/rGO	spraying	0.13	14.6	no	Not mentioned	Not mentioned	2019	9
HPM	brush coating	0.24	19.1	no	Not mentioned	Not mentioned	2020	10
MCG	direct-laser	0.166	73	no	Not mentioned	Not mentioned	2020	11
	writing							
Graphene	meyer-rod	Not mentioned	3.82	no	Not mentioned	Not mentioned	2020	12
	coating							
Ag nanowires	papermaking	Not mentioned	10.2	no	Not mentioned	Not mentioned	2020	13
MoS ₂ Pencil	hand writing	Not mentioned	13	no	Not mentioned	Not mentioned	2021	14
CB/CNT	dip-coating	Not mentioned	7.5	yes	Not mentioned	Not mentioned	2019	15
Carbon ink	soaking-drying	0.34	Not mentioned	yes	Not mentioned	Not mentioned	2021	16
Ag/MWCNTs	sputter coating	0.078	263.34	no	yes	yes	2021	17
Graphite	papermaking	0.3	18.99	yes	yes	Not mentioned	-	this
nanoplates								work

Table S1. Comparisons of the reported various paper-based strain sensors with this work.

- 48 detection.

- 51 Figure S2. SEM images of (a) graphite nanoplates and (b) graphite powders.

- 54 Figure S3. FESEM images of graphite nanoplates

- 56 [µm]
 57 Figure S4. AFM image of graphite nanoplates with corresponding height profile.
- 58

- 60 Figure S5. 3D images of the composite paper (a) before and (b) after coating AKD.
- 61

- 63 Figure S6. Schematic model for calculation of the strain under bending. The sagitta
- 64 was measured before the calculation.

Figure S7. Illustration of the sensor under strain with different content of graphite 67 nanoplates.

70 Figure S8. SEM images of the composite paper with graphite nanoplates content of (a,

71 d) 15 *wt*%, (b, e) 22 *wt*% and (c, f) 30 *wt*%.

Figure S9. a) Stress-strain curves of the composite paper with different content of
graphite nanoplates. b) Stress-strain curves of the composite paper with different
content of CNF.

Figure S10. (a) Resistance change ratio ($\Delta R/R_0$) under various bending strains (ϵ) of the paper-based sensor with different coating times of AKD, and (b) the corresponding

84 GF. Cross-section SEM images of the composite paper (c) before and (d) after coating

- 85 AKD.
- 86

88 Figure S11. The water contact angle of the composite paper with different graphite

89 nanoplates content after two times of AKD coating.

90

91

92 Figure S12. Stress-strain curves of the composite paper with and without coating AKD.

93

94

95 Figure S13. Resistance change ratio as function of the bending strain applied in normal

96 circumstance (RH=27%), in high humidity (RH=80%) and under water.

97

98

99 Figure S14. Illustration of the testing setup of the sensor for 1000 bending-unbending

100 cycles under water.

101	Reference				
102	1.	X. Liao, Q. Liao, X. Yan, Q. Liang, H. Si, M. Li, H. Wu, S. Cao and Y. Zhang, Advanced			
103		Functional Materials, 2015, 25, 2395-2401.			
104	2.	Y. Wei, S. Chen, F. Li, Y. Lin, Y. Zhang and L. Liu, Acs Applied Materials & Interfaces, 2015,			
105		7, 14182-14191.			
106	3.	X. Q. Liao, Z. Zhang, Q. L. Liao, Q. J. Liang, Y. Ou, M. X. Xu, M. H. Li, G. J. Zhang and Y.			
107		Zhang, Nanoscale, 2016, 8, 13025-13032.			
108	4.	H. Liu, H. Jiang, F. Du, D. Zhang, Z. Li and H. Zhou, Acs Sustainable Chemistry & Engineering,			
109		2017, 5 , 10538-10543.			
110	5.	B. Saha, S. Baek and J. Lee, Acs Applied Materials & Interfaces, 2017, 9, 4658-4666.			
111	6.	H. Song, J. Zhang, D. Chen, K. Wang, S. Niu, Z. Han and L. Ren, Nanoscale, 2017, 9, 1166-			
112		1173.			
113	7.	H. Liu, H. Xiang, Y. Ma, Z. Li, Q. Meng, H. Jiang, H. Wu, P. Li, H. Zhou and W. Huang, Acs			
114		Sustainable Chemistry & Engineering, 2018, 6, 15749-15755.			
115	8.	DJ. Lee and D. Y. Kim, <i>Ieee Access</i> , 2019, 7, 77200-77207.			
116	9.	H. Liu, H. Xiang, Y. Wang, Z. Li, L. Qian, P. Li, Y. Ma, H. Zhou and W. Huang, Acs Applied			
117		Materials & Interfaces, 2019, 11, 40613-40619.			
118	10.	W. Chen, Z. Wang, Q. Li, X. Jin, H. Liu and H. Zhou, Acs Applied Electronic Materials, 2020,			
119		2 , 247-253.			
120	11.	Y. Long, P. He, R. Xu, T. Hayasaka, Z. Shao, J. Zhong and L. Lin, <i>Carbon</i> , 2020, 157 , 594-601.			
121	12.	X. Qi, X. Li, H. Jo, K. S. Bhat, S. Kim, J. An, JW. Kang and S. Lim, Sensors and Actuators a-			
122		<i>Physical</i> , 2020, 301 .			
123	13.	R. Yin, S. Yang, Q. Li, S. Zhang, H. Liu, J. Han, C. Liu and C. Shen, Science Bulletin, 2020, 65,			
124		899-908.			
125	14.	S. Veeralingam, P. Sahatiya and S. Badhulika, <i>Ieee Sensors Journal</i> , 2021, 21, 8943-8949.			
126	15.	Q. Li, H. Liu, S. Zhang, D. Zhang, X. Liu, Y. He, L. Mi, J. Zhang, C. Liu, C. Shen and Z. Guo,			
127		Acs Applied Materials & Interfaces, 2019, 11, 21904-21914.			
128	16.	L. Liu, Z. Jiao, J. Zhang, Y. Wang, C. Zhang, X. Meng, X. Jiang, S. Niu, Z. Han and L. Ren, Acs			
129		Applied Materials & Interfaces, 2021, 13, 1967-1978.			
130	17.	Z. Duan, Y. Jiang, Q. Huang, Q. Zhao, Z. Yuan, Y. Zhang, S. Wang, B. Liu and H. Tai, Journal			
131		of Materials Chemistry C, 2021, 9, 14003-14011.			
132					