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S1. Data availability 

The simulation input and output required to reproduce the presented results are publicly available 

in the NOMAD database.1 

 

S2. Experimental starting geometries 

The crystal structures used as starting points for the geometry optimisations are listed in Table 

S 1. Additionally, the table shows the identifiers and deposition numbers of the crystal structures 

of the Cambridge Structural Database (CSD).2 

 

Table S 1: Experimental crystal structures used as starting points for the DFT geometry 

optimizations. 

Molecule/Phase Abbreviation 
CSD identifier and deposition 

number of the starting geometry 
Reference 

Benzene/ 

Orthorhombic Polymorph I 
1A-o BENZEN01 / 1108750 3 

Benzene/ 

Monoclinic Polymorph III 
1A BENZEN03 / 1108752 4 

Naphthalene 2A NAPHTA31 / 600182 5 

Anthracene 3A ANTCEN14 / 1103074 6 

Tetracene 4A TETCEN01 / 114446 7 

Pentacene/Polymorph I 5A PENCEN / 1230799 8 

Pentacene/Polymorph II 5A-II PENCEN04 / 170187 9 

 

 

S3. Details on the structural similarities and differences among the discussed systems 

Table S 2 contains the main parameters of the unit cells of the studied systems. One observes 

rather significant variations of the area of the basal plane, the aspect ratios, and also the nearest-

neighbour distances as well as the distances to the nearest symmetry-equivalent molecules (which 

are given by a1 and a2, respectively).  Also, some other variations stand out, like the particularly 
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small (large) area of the basal plane for monoclinic benzene (tetracene) and the generally smaller 

aspect ratios for the triclinic systems (which also result in smaller nearest-neighbour distances), 

but by and large, the variations in the geometric parameters appear not to be particularly 

systematic. Thus, in the following table, several geometric parameters are collected that 

characterise the arrangement of neighbouring molecules in the unit cell. Note that in order to be 

consistent with the unit cells of the longer acenes (see caption of Table S 2), the long/short 

molecular axis as well as the lattice vectors must be reassigned for 1A, 4A, and 5A-II. This 

reassignment is explained for the most complex case of 1A by comparing the crystal structure of 

1A and 2A in Figure S 3. 

 

Table S 2: Unit cell-related parameters of the studied systems: The table contains the lengths of 

the lattice vectors and the angle between them. The a1,a2 plane corresponds to the plane in which 

the acene molecules are arranged; a1 is always chosen such that that it is the longer of the two 

vectors; a3 is the direction that is (more or less) parallel to the long molecular axis. For the sake 

of consistency, this naming convention is applied to all systems, even in cases in which the order 

of the unit cell vectors is changed in the respective files in the Cambridge Structural Database 

(CSD); i.e. for 4A and 5A-II the a2 axes of the CSD become a1 and the - a1 axis becomes a2. The 

situation is even more involved for monoclinic benzene, where the a2 axes of the CSD becomes – 

a2 and the a1 and a3 axes become – a3 and -a1. The reason for that is illustrated in Figure S 3. Other 

than that, the unit-cell definitions from the CSD are kept, even if that means that the definitions of 

the a1 vectors in A4 and A5-II are not consistent with the other systems, as manifested by smaller 

than 90° 3 values and as exemplarily shown in Figure S 1. 1 is the angle between a3 and a2, 2 

the angle between a1 and a3, and 3 the angle between a2 and a1. Aa1a2 is the area of the basal 

plane of the unit cell, and AR the aspect ratio of the two vectors a1 and a2. dnn, the nearest 

neighbour distance is defined as half of the length of the shorter diagonal of Aa1a2. 

 crystal class a1 / Å a2 / Å a3 / Å 1 / °  2 / ° 3 / ° Aa1a2 / Å2 AR dnn / Å 

1A-o*) orthorhombic 6.756 7.318 9.288 90.0 90.0 90.0 49.44 1.08 4.98 

1A monoclinic 7.768 5.558 5.632 90.0 111.2 90.0 43.18 1.40 4.776 

2A monoclinic 8.078 5.903 8.622 90.0 124.2 90.0 47.69 1.37 5.003 

3A monoclinic 8.426 5.930 11.110 90.0 125.4 90.0 49.97 1.42 5.151 

4A triclinic 7.776 6.016 12.911 72.6 77.1 94.5 46.63 1.29 4.725 

5A triclinic 7.733 6.071 15.839 103.3 113.1 85.1 46.78 1.27 4.708 

5A-II triclinic 7.638 6.271 14.314 89.0 76.8 95.9 47.65 1.22 4.685 

*)This unit cell contains four molecules. 
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Figure S 1: Side views of the unit cells of 3A and 4A to illustrate the conceptually different choices 

of the a3 vector that has been made for the data provided in the CSD. Atomic colour coding: 

C…grey, H…white 

 

A comparison of the arrangement of the molecules within the unit cell reveals the actual 

differences between the various acene crystal structures. The most relevant geometrical parameters 

are summarized in Table S 3 and sketches to better explain their meaning are contained in Figure 

S 4. Figure S 5 provides top views of the unit cells (with a viewing direction perpendicular to the 

basal a1,a2-plane). These data allow the following conclusions: 

(i) regarding the tilts of the molecules relative to the normal to the a1,a2 plane, there are two 

groups of acenes: in 1A-3A, the two molecules per unit cell are tilted in different directions, 

which are symmetrically arranged left above and below the (negative) a1 axis (see 6th 

column in Table S 3 and Figure S 5). As a result, the angle between the long axes of the 

molecules is rather large but continuously decreases from 1A (39.4°) to 3A (13.8°). 

Conversely, for 4A, 5A, and 5A-II, both molecules tilt essentially in the same direction, 

which is nearly diagonal with respect to the a1 and a2 axes. Consequently, the two 

molecules are no longer symmetry- equivalent (see Figure S 5) consistent with the triclinic 

structure of the unit cells. 

(ii) This different mode of tilting also results in smaller tilt angles in 4A, 5A, and 5A-II 

compared to 2A and 3A.  
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(iii) Monoclinic benzene displays a few additional deviations from the other (short acenes): its 

tilt angle, , is much smaller than that of 2A and 3A, and, more importantly, here the two 

molecules tilt nearly perpendicular to the a1 axis (i.e., parallel to the a2 axis) 

(iv) The angle between the short molecular axes in 1A is much larger than in the longer acenes. 

Consequently, in 1A the planes of the two molecules per unit cell come to lie close to 

perpendicular, while they are much less inclined relative to each other in the other acenes. 

(v) Finally, two systems also stand out regarding the displacements of equivalent molecules in 

consecutive layers (see Figure S 4(b)): in benzene, the normal distance between the planes 

of the molecules amounts to 2.85 Å; i.e., there is a particularly large perpendicular offset, 

perp, between molecules in consecutive layers, when viewing the structure along the long 

molecular axis. Conversely, equivalent pentacene molecules in consecutive layers are close 

to coplanar in 5A-II.   

(vi) The values of perp and short also motivate, why the structure of 5A is more consistent with 

the shorter acenes than that of 5A-II.  

Overall, these data show that there are two qualitatively different groups of systems (1A to 3A 

vs. 4A, 5A and 5A-II), which within the groups share common geometrical features. Moreover, 

concerning most quantitative parameters, the structure of benzene quite notably differs from that 

of the longer acenes in its group. 

 

 

Figure S 2: Ambiguity for choosing the long molecular axis for orthorhombic benzene. The green 

and blue arrows indicate choices of the long molecular axis that would be consistent with the 

situations for naphthalene and anthracene, while the dashed red arrow would not be (although it 

would appear as the natural choice for benzene per se). Atomic colour coding: C…grey, H…white. 
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Table S 3: Geometrical parameters describing the arrangement of the molecules within the unit 

cell. 1 and 2 denote the angles of the long molecular axes relative to the normal to the basal 

a1,a2-plane and 1 and 2 are the angles between the projections of the long molecular axes into 

the basal plane and the a1 axis (see sketch in Figure S 4(a)). The orientation of 1 and 2 relative 

to the (negative) a1 axis is also summarized in the 6th column of the table. For benzene, the 

definition of the long molecular axis is a priori not unique, as illustrated in Figure S 2, but a 

detailed comparison between the structures of benzene and naphthalene reveals that the green 

arrow in Figure S 2 denotes the most consistent definition of the long molecular axis (see Figure 

S 3) . long and short denote the angles between the long and short molecular axes of the two 

molecules per unit cell. perp and short are the components of the vectors connecting equivalent 

molecules in consecutive layers (i) perpendicular to the molecular planes and (ii) within the planes 

parallel to the short molecular axes, as sketched in Figure S 4(b). In cases, in which different shifts 

for the two molecules in the unit cell are observed, these are separated by a “/”. perp also 

corresponds to the normal distance between the planes defined by equivalent molecules in 

consecutive layers. 

 
1 / ° 2 / ° 1 / ° 2 / ° 

relative  

to (-)a1 / ° 
long / ° short / ° perp / Å short / Å 

1A 19.8 19.8 86.2 273.8 = ±86.2 39.4 77.9 2.58 0.40 

2A 30.7 30.7 156.2 203.8 = ±23.8 23.8 56.4 1.54 1.22 

3A 31.5 31.6 166.7 193.3 = ±13.3 13.8 53.3 1.38 0.82 

4A*) 23.8 21.5 137.9 135.1 =-46.5/-44.9 2.6 51.5 1.82/1.23 0.42/1.25 

5A*) 24.4 22.7 222.3 220.2 =+42.3/+40.

2 

1.9 51.1 1.82/1.20 0.43/1.31 

5A-II*) 25.7 26.4 133.5 134.3 =-46.5/-45.7 0.8 52.3 0.81/0.55 1.14/1.16 

* The sign of the angles relative to -a1 varies here because of the conceptionally different choices 

of the a3 axes in the CSD for 4A and 5A-II compared to the other crystals, as indicated in Figure 

S 1; however, this does not imply a conceptual change of the structure. Here, positive angles refer 

to anticlockwise rotations.  
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Figure S 3: Crystal structure of benzene (1A) and naphthalene (2A) shown in different directions. 

The arrows on the molecules show the long (blue) and short (red) molecular axes as well as 

directions orthogonal to the -planes (green). The three arrows with darker shade belong to one 

of the two molecules per unit cell, the arrows with lighter shade belong to the other molecule. 

Based on these directions in the longer acenes (e.g., 2A), equivalent directions can be found also 

in benzene, although the “long” and “short” axes (blue and red arrows) do not correspond to the 

long and short axis of benzene per se (which for a single ring would pass through the top and 

bottom atom). Due to the equivalence and similarity of the molecular arrangement, the lattice 

vectors of the original structure contained in the CSD is changed (a1→ -a3, a2 → -a2, a3→-a1) to 

be consistent with the longer acenes (see above). Atomic colour coding: C…grey, H…white. 

Visualised using the VESTA 3 code.10 
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Figure S 4: (a) (a) Schematics defining the angles  and  for each molecule in the unit cell, where 

the black arrow corresponds to the long molecular axis of the molecule. (b) Offsets between 

equivalent molecules viewed along the long molecular axes. Light and dark shaded molecules are 

in consecutive acene layers and the dashed red lines denote the projections of the respective 

molecular planes 

 
Figure S 5: Structures of the studied series of acenes (1A – 5A-II) viewed in a direction 

perpendicular to the a1,a2-plane. The green, dash-dotted arrows are only a guide to the eye to be 

able to (approximately) assess the orientation of the molecules (i.e., their lengths are not to scale 

and for 4A, 5A and 5A-II, a1 and a2 are not orthogonal. The red arrows denote the projections of 

the long molecular axes to illustrate in which direction the molecules are tilted (see definition of 

 in Figure S 4(a)). Atomic colour coding: C…grey, H…white. 
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S4. Methodological details 

S4.1 Further settings for the density functional theory calculations 

Besides the general simulation settings described briefly in the main text, the following 

additional settings for DFT calculations employing the VASP code (version 5.4.1) were chosen. 

The globally fixed parameters include (VASP setting tags in parentheses; for details refer to the 

VASP manual11): the employed D3-BJ12,13 a posteriori van der Waals correction (IVDW = 12), 

a total energy convergence criterion for the self-consistent field calculation of 10-8 eV (EDIFF = 

1E-8), Gaussian smearing of the electronic states with a width of 0.05 eV (ISMEAR = 0; 

SIGMA = 0.05), and high global precision (PREC = Accurate). 

The discrete k-meshes of electronic wave vectors were adjusted for each system individually to 

achieve homogenous sampling of the first Brillouin zones, with the density and the k-mesh being 

chosen such that the total energies were converged below ~0.5 meV/atom. In these convergence 

tests, an energy cutoff of 900 eV in all systems in combinations with the k-meshes listed in Table 

S 4 turned out to achieve the desired level of convergence. These settings were shown to yield 

high accuracy results in phonon-related properties compared to experimental measurements in 

crystalline naphthalene14.  

 

Table S 4: System-specifically chosen sampling meshes of (-centred) electronic wave vectors, k. 

Note that the order of integer sampling points along the reciprocal lattice vectors is given for the 

definitions of the unit cells as deposited in the CSD (see above). 

System (-centred) k-mesh  

1A-o 2×2×1 

1A 3×3×2 

2A 2×3×2 

3A 2×3×2 

4A 2×2×1 

5A 2×2×1 

5A-II 2×2×1 
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The headers of the PAW-pseudopotentials that we used for the DFT calculations (for carbon and 

hydrogen atoms) are listed in Table S 5. 

 

Table S 5: Headers of the used (standard) pseudopotentials for all atomic species. 

Atomic species Pseudopotential header  

C PAW_PBE C 08Apr2002 

H PAW_PBE H 15Jun2001 

 

 

S4.2 Geometry and unit cell optimisations 

The atomic positions and the lattice parameters were optimized to residual forces below 

1 meV/Å employing the conjugate gradient algorithm within the following procedure: the 

independent lattice parameters and the atomic positions were optimised at a few fixed unit-cell 

volumes (using the VASP optimisation keyword ISIF=4). This procedure avoids Pulay stresses15 

to a large extent.11 The optimum unit-cell volume was subsequently determined by fitting total 

energies of those structures with optimized lattice constants and atomic positions but fixed unit-

cell volumes to a Rose-Vinet equation of state16. Finally, a last optimization was carried out at the 

optimal volume extracted from the fitted equation of state to obtain the final atomic positions and 

lattice parameters. 

 

S4.3 Phonon calculations 

Regarding the phonon calculations using the Phonopy code,17 a displacement distance of 0.01 Å 

was used to displace the atoms in supercells of system-specifically adjusted extents (see Table S 

6) which were chosen based on thorough convergence tests for 2A.14 For band structure plots, the 

reciprocal space between each pair of high-symmetry points was sampled by 200 intermediate 

points, while for quantities that rely on a homogeneous sampling of the entire first Brillouin zone 

(density of states/group velocities, heat capacity) system-specific meshes of phonon wave vectors, 

q, were used (see Table S 6). For the group velocities, the meshes were shifted such that they do 

not include the centre of the first Brillouin zones, .  Table S 6 shows two choices of q-meshes 
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which sample the respective first Brillouin zones with different densities. The “dense” meshes 

(with a maximum integer of 15) were used for the (computationally more demanding) two-

dimensional densities of frequencies and group velocities, while the “highly dense” meshes (with 

a maximum integer of 30) were used for densities of states (DOSs), densities of group velocities 

(DOGVs) and for the calculation of the heat capacity, CV. 

 

Table S 6: System-specifically chosen supercell sizes. Note that the order of integer replication 

factors along the lattice vectors as well as the order of integer sampling points along the reciprocal 

lattice vectors are given for the definitions of the unit cells as deposited in the CSD (see above). 

System Supercell size  q-meshes (dense) q-mesh (highly dense) 

1A-o 2×2×2 15×14×11 30×28×22 

1A 3×3×2 15×14×11 30×28×22 

2A 2×3×2 13×15×12 27×30×25 

3A 2×3×2 13×15×10 26×30×20 

4A 2×2×2 15×11×7 30×23×14 

5A 2×2×2 12×15×6 25×30×12 

5A-II 2×2×2 15×13×7 30×25×13 

 

 

S4.4 Densities of states per frequency and per group velocity 

Based on the uniformly sampled group velocities and frequencies, a two-dimensional density of 

states, g, per frequency, , and per group velocities, vg, was calculated using the following 

definition:  

𝑔(𝜔, 𝑣𝑔) =
1

3𝑁

1

𝑁𝑞
 ∑𝛿(𝜔 − 𝜔𝜆) 𝛿(𝑣𝑔 − 𝑣𝑔,𝜆)

𝜆

 (S1). 

   

Here, 3N is the number of bands, Nq the number of wave vectors used in the sum over the joint 

index  containing the band index and the wave vector. The delta distributions in Equation (S1) 

were replaced by Lorentzian functions of finite widths of vg = 0.02 THzÅ (=0.002 kms-1) for 

group velocities and  = 0.05 THz for frequencies (with x representing either group velocities or 

frequencies): 
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𝛿(𝑥 − 𝑥𝜆) →
1

𝜋

𝜎𝑥
(𝑥 − 𝑥𝜆)2 + 𝜎𝑥2

  (S2) 

In other words, the finite broadening parameter, x, corresponds to the half width at half 

maximum of the artificially broadened peaks. 

From the density g in frequency-group velocity space, one can, in principle, directly calculate 

the density of states (DOS; density of states per frequency) and the density of states per group 

velocity (DOGV) by integrating Equation (S1) over the (continuous) group velocity or frequency 

variable, respectively: 

𝐷𝑂𝑆(𝜔)

3𝑁
=  ∫𝑑𝑣𝑔   𝑔(𝜔, 𝑣𝑔) =  

1

3𝑁

1

𝑁𝑞
 ∑𝛿(𝜔 − 𝜔𝜆)

𝜆

 (S3) 

𝐷𝑂𝐺𝑉(𝑣𝑔)

3𝑁
= ∫𝑑𝜔   𝑔(𝜔, 𝑣𝑔) =

1

3𝑁

1

𝑁𝑞
 ∑𝛿(𝑣𝑔 − 𝑣𝑔,𝜆)

𝜆

 (S4) 

Although these integrations could be carried out numerically to obtain the DOS and the DOGV 

from g, these two quantities were calculated separately using denser meshes of (phonon) wave 

vectors, q, using Equation (S3) and (S4) directly. The reason why less dense meshes were used for 

the computation of the density g in the first place, was a notable decrease in computational 

efficiency with the density of the q-mesh: for denser meshes, no visually perceivable changes in g 

were observed any more, while the computational time (due to fact that large two-dimensional 

arrays had to be stored and changed) significantly increased. 

For the sake of completeness, the following plots show the DOS, the DOGV and the two-

dimensional densities, g, for all studied molecular crystals. 
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Figure S 6: Phonon DOSs (normalised by the number of bands, 3N) of the studied organic 

semiconductor crystals (a) in the low-frequency region ≤ 7 THz and (b) in the entire spectral 

range. The low-frequency region is indicated in panel (b) by the grey shaded area. The hatched 

DOSs highlight those polymorphs that were not treated explicitly in the main text. 
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Figure S 7: Density of states per group velocity (DOGVs) of the studied organic semiconductor 

crystals (a) if only the modes in the low-frequency region ≤ 7 THz are considered and (b) if the 

entire spectral range is considered. The hatched DOGVs highlight those polymorphs that were not 

treated explicitly in the main text. 
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As far as the evolution of the group velocities with molecular length is concerned, one can see 

in the density of states per group velocities (DOGV) which has been restricted to phonons with 

frequencies ≤ 7 THz (see Figure S 7(a)) the various systems tend to peak at group velocities 

between ~0.25 and 0.75 kms-1. Additionally, an odd-even effect seems to be visible in the low-

frequency DOGV: while 2A and 4A show a pronounced (narrow) maximum al low group 

velocities, this maximum vanishes in 1A and 5A. Also in 3A it is considerably smaller, although 

it does not vanish. This means that 2A and 4A have a comparably large part of low-vg bands ≤ 7 

THz. The exact reason for this remains elusive, but it is likely the result of a complex superposition 

of strong shifts/weak shifts of bands, avoided crossings, unit-cell extents etc. 

When considering all phonons (i.e., with no frequency restriction; see Figure S 7(b)), the 

DOGVs for low group velocities are drastically increased, which is a consequence of most 

intramolecular bands being rather flat due to a weak interaction between molecules for the 

respective motions. Although still, the DOGV for high group velocities slightly increases with the 

molecule length from 1A to 5A, the increasing number of comparably flat high-frequency 

intramolecular bands in the larger system causes the medians (maxima) of the DOGVs to shift 

considerably to lower frequencies. Here, a monotonic decrease of the median position of the all-

phonon DOGVs is observed from 1A (~0.057 kms-1) – with 1A-o already showing a sharp decrease 

to ~0.035 kms-1 - to 5A (~0.014 kms-1). 
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Figure S 8: Two-dimensional densities in group velocity-frequency-space, g (see Equation (S1)), 

for all studied organic semiconductor crystals. The density is plotted as the (logarithmic) colour 

scale. 

 

S4.5 Participation ratios 

The participation ratio (PR) of a phonon mode  describes the degree of localization of the 

atomic motion associated with the phonon mode.18–21 Therefore, the PR is a convenient measure 

to quantify the extent of moving atoms in the unit cell. According to its definition, 

𝑃𝑅𝜆 =
(∑ ∑ 𝑚𝑖

−1 |𝒆𝑖,𝜆
𝛼 |

23
𝛼=1

𝑁
𝑖=1 )

2

𝑁 (∑ ∑ 𝑚𝑖
−2 |𝒆𝑖,𝜆

𝛼 |
43

𝛼=1
𝑁
𝑖=1 )

  (S5), 
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the PR depends on the atomic masses, mi, of the N atoms in the unit cell and on the th Cartesian 

component of the phonon (polarisation) eigenvectors, e
,. To calculate the PR of a mode, one 

must carry out the above summation over Cartesian directions, , and atoms, i.  

One can easily verify that the PR ranges between 1 (if all atoms move with the same amplitude) 

and 1/N (if only one atom in the unit cell moves). 

 

S5. Animations of phonon modes  

S5.1 -phonons 

To facilitate the association of the provided -phonon animations with the discussed vibrations, 

the following tables list the frequencies and types of modes that the video files show. 

 

Table S 7: Animations of -phonons of 1A. The relative phases between the motions of the two 

molecules per unit cell are abbreviated as IP (in-phase) and AP (antiphase). 

Frequency / THz Type of Mode  File Name 

1.21 RRIMM a1/normal IP mode04_01d21THz.mp4 

1.89 RRIMM a1/normal AP mode05_01d89THz.mp4 

2.10 TRIMM a3/long mode06_02d10THz.mp4 

2.62 TRIMM a2/short mode07_02d62THz.mp4 

2.93 RRIMM a2/short IP mode08_02d93THz.mp4 

3.13 RRIMM a2/short AP mode09_03d13THz.mp4 

3.14 TRIMM a1/normal mode10_03d14THz.mp4 

3.67 RRIMM a3/long AP mode11_03d67THz.mp4 

3.76 RRIMM a3/long IP mode12_03d76THz.mp4 

 

Table S 8: Animations of -phonons of 2A. The relative phases between the motions of the two 

molecules per unit cell are abbreviated as IP (in-phase) and AP (antiphase). 

Frequency / THz Type of Mode  File Name 

1.57 RRIMM a1/normal IP mode04_01d57THz.mp4 

1.66 TRIMM a3/long mode05_01d66THz.mp4 

1.85 RRIMM a1/normal AP mode06_01d85THz.mp4 
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2.27 TRIMM a2/short mode07_02d27THz.mp4 

2.43 RRIMM a2/short AP mode08_02d43THz.mp4 

2.60 RRIMM a2/short IP mode09_02d60THz.mp4 

3.20 TRIMM a1/dist. mode10_03d20THz.mp4 

3.56 RRIMM a3/long AP mode11_03d56THz.mp4 

4.11 RRIMM a3/long IP mode12_04d11THz.mp4 

5.27 Bending IP mode13_05d27THz.mp4 

5.78 Bending AP mode14_05d78THz.mp4 

6.37 Torsion IP mode15_06d37THz.mp4 

6.41 Torsion AP mode16_06d41THz.mp4 

 

Table S 9: Animations of -phonons of 3A. The relative phases between the motions of the two 

molecules per unit cell are abbreviated as IP (in-phase) and AP (antiphase). 

Frequency / THz Type of Mode  File Name 

1.31 RRIMM a1/normal AP mode04_01d31THz.mp4 

1.39 TRIMM a3/long mode05_01d39THz.mp4 

1.53 RRIMM a1/normal IP mode06_01d53THz.mp4 

2.08 RRIMM a2/short AP mode07_02d08THz.mp4 

2.10 TRIMM a2/short mode08_02d10THz.mp4 

2.39 RRIMM a2/short IP mode09_02d39THz.mp4 

3.15 TRIMM a1/normal mode10_03d15THz.mp4 

3.21 Bending IP mode11_03d21THz.mp4 

3.77 Bending AP mode12_03d77THz.mp4 

3.86 RRIMM a3/long AP mode13_03d86THz.mp4 

4.09 RRIM a3/long IP mode14_04d09THz.mp4 

4.96 Torsion IP mode15_04d96THz.mp4 

5.01 Torsion AP mode16_05d01THz.mp4 
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Table S 10: Animations of -phonons of 4A. The relative phases between the motions of the two 

molecules per unit cell are abbreviated as IP (in-phase) and AP (antiphase). 

Frequency / THz Type of Mode  File Name 

1.09 TRIMM a3/long mode04_01d09THz.mp4 

1.42 RRIMM a1/normal IP mode05_01d42THz.mp4 

1.54 RRIMM a1/normal AP mode06_01d54THz.mp4 

1.93 RRIMM a2/short IP mode07_01d93THz.mp4 

2.11 Bending IP mode08_02d11THz.mp4 

2.15 TRIMM a2/short mode09_02d15THz.mp4 

2.78 RRIMM a2/short AP mode10_02d78THz.mp4 

3.15 TRIMM a1/normal mode11_03d15THz.mp4 

3.26 Bending AP mode12_03d26THz.mp4 

3.74 RRIMM a3/long AP mode13_03d74THz.mp4 

4.12 RRIMM a3/long IP mode14_04d12THz.mp4 

4.23 Torsion IP mode15_04d23THz.mp4 

4.51 Torsion AP mode16_04d51THz.mp4 

 

Table S 11: Animations of -phonons of 5A. The relative phases between the motions of the two 

molecules per unit cell are abbreviated as IP (in-phase) and AP (antiphase). 

Frequency / THz Type of Mode  File Name 

1.15 TRIMM a3/long mode04_01d15THz.mp4 

1.25 RRIMM a1/normal IP mode05_01d25THz.mp4 

1.51 RRIMM a1/normal AP mode06_01d51THz.mp4 

1.75 Bending IP mode07_01d75THz.mp4 

1.85 RRIMM a2/short IP mode08_01d85THz.mp4 

2.19 TRIMM a2/short mode09_02d19THz.mp4 

2.85 RRIMM a2/short AP mode10_02d85THz.mp4 

2.96 Bending AP mode11_02d96THz.mp4 

3.22 TRIMM a1/normal mode12_03d22THz.mp4 

3.65 RRIMM a3/long AP mode13_03d65THz.mp4 

3.77 In-Plane Bending IP mode14_03d77THz.mp4 
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3.85 In-Plane Bending AP mode15_03d85THz.mp4 

4.05 Second-Order Bending IP mode16_04d05THz.mp4 

4.11 Torsion AP mode17_04d11THz.mp4 

4.12 Second-Order Bending AP mode18_04d12THz.mp4 

4.24 RRIMM a3/long IP mode19_04d24THz.mp4 

4.51 Torsion IP mode20_04d51THz.mp4 

5.50 Second-Order Torsion AP mode21_05d50THz.mp4 

5.64 Second-Order Torsion IP mode22_05d64THz.mp4 

 

Table S 12: Animations of -phonons of 5A-II. The relative phases between the motions of the two 

molecules per unit cell are abbreviated as IP (in-phase) and AP (antiphase). 

Frequency / THz Type of Mode  File Name 

1.18 RRIMM a2/short IP  mode04_01d18THz.mp4 

1.31 TRIMM a3/long mode05_01d31THz.mp4 

1.72 RRIMM a1/normal IP mode06_01d72THz.mp4 

1.78 Bending IP mode07_01d78THz.mp4 

2.21 TRIMM a2/short mode08_02d21THz.mp4 

2.33 RRIMM a1/normal AP mode09_02d33THz.mp4 

2.84 Bending AP mode10_02d84THz.mp4 

2.84 RRIMM a2/short AP mode11_02d84THz.mp4 

3.22 TRIMM a1/normal mode12_03d22THz.mp4 

3.74 In-Plane Bending IP mode13_03d74THz.mp4 

3.75 Second-Order Bending IP mode14_03d75THz.mp4 

3.79 In-Plane Bending AP mode15_03d79THz.mp4 

3.90 RRIMM a3/long AP mode16_03d90THz.mp4 

3.96 Torsion AP mode17_03d96THz.mp4 

4.12 Second-Order Bending AP mode18_04d12THz.mp4 

4.24 RRIMM a3/long IP mode19_04d24THz.mp4 

4.40 Torsion IP mode20_04d40THz.mp4 
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S5.2 Acoustic phonons close to  

In addition to the animations of -phonons, also the acoustic phonons in selected directions were 

animated to gain some insight into the atomic displacements of the associated motions. The atomic 

geometries displaced along the phonon eigendisplacements (at q ≠ 0) were generated in a way 

analogous to the implementation in Phonopy.17 The so-created displaced geometries were 

subsequently rendered using the Ovito software22 and saved as files “TA1.mp4”, “TA2.mp4”, and 

“LA.mp4” (for the first transverse, the second transverse, and the longitudinal acoustic modes) in 

the respective subfolders according to the directions of the wave vectors (see Table S 13). 

 

Table S 13: Coordinates of the wave vectors in 5A for which the acoustic modes were animated. 

Here, the vector norm of the wave vector was held at a constant value corresponding to the radius 

of the spheres around , at which the sound velocities are calculated: for 5A, the chosen length of 

the wave vector is q = 4.42 10-3Å-1. Additionally, to facilitate the visual recognition, one set of 

animations has been created with keeping the directions of the wave vectors constant but 

increasing its magnitude to 10q.  The unit vectors of various selected directions are listed below. 

The direction a3 corresponds to the direction along the lattice vector a3, while a1’ and a2’ are the 

projections of a1 and a2 into the plane orthogonal to a3. The directions bi correspond to the 

directions of the reciprocal lattice vectors. In the last column, the more common way of defining 

the wave vector in terms of the reciprocal lattice vectors, bi, is shown, where all shown wave 

vectors have the magnitude q. 

direction Cartesian unit vectors  
Wave vector  

(in units of reciprocal lattice vectors) 

a3 [-0.3860, -0.1920, 0.9023] [-0.00213, -0.00098, 0.01113] 

a1’ [ 0.9225, -0.0743, 0.3788] [ 0.00500, -0.00002, 0.00000] 

a2’ [-0.0111, 0.9790, 0.2036] [-0.00003, 0.00415, 0.00000] 

b1 [ 0.9224, -0.0686, 0.3800] [0.00500,0.00000,0.00000] 

b2 [-0.0057, 0.9786, 0.2058] [ 0.00000, 0.00415,0.00000] 

b3 [0.0051, 0.0096, 0.9999] [ 0.00000,0.00000,0.01000] 

 

S6. Phonon band structures and first Brillouin zones 

The following figures show the low-frequency phonon band structures of all studied molecular 

crystals along with their first Brillouin zones. There, also the high-symmetry points are displayed 
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explicitly to facilitate the recognition of the directions of the corresponding wave vectors with 

respect to the (reciprocal) lattice. 

 
Figure S 9: (a) First Brillouin zone of the reordered lattice (see Section S3) of monoclinic benzene 

(1A) with the high-symmetry points, between which the phonon band structure in panel (b) is 

shown. The reciprocal, bi, and real-space lattice vectors, ai, are displayed as red and purple 

arrows, respectively. The bands are coloured according to their participation ratios (see Section 

S4.5). 

 
Figure S 10: (a) First Brillouin zone of orthorhombic benzene (1A-o) with the high-symmetry 

points, between which the phonon band structure in panel (b) is shown. The reciprocal, bi, and 

real-space lattice vectors, ai, are displayed as red and purple arrows, respectively.  The bands are 

coloured according to their participation ratios (see Section S4.5). 
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Figure S 11: (a) First Brillouin zone of naphthalene (2A) with the high-symmetry points, between 

which the phonon band structure in panel (b) is shown. The reciprocal, bi, and real-space lattice 

vectors, ai, are displayed as red and purple arrows, respectively. The bands are coloured 

according to their participation ratios (see Section S4.5). 

 
Figure S 12: (a) First Brillouin zone of anthracene (3A) with the high-symmetry points, between 

which the phonon band structure in panel (b) is shown. The reciprocal, bi, and real-space lattice 

vectors, ai, are displayed as red and purple arrows, respectively.  The bands are coloured 

according to their participation ratios (see Section S4.5). 
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Figure S 13: (a) First Brillouin zone of the reordered lattice (see Section S3) of tetracene (4A) 

with the high-symmetry points, between which the phonon band structure in panel (b) is shown. 

The reciprocal, bi, and real-space lattice vectors, ai, are displayed as red and purple arrows, 

respectively. The bands are coloured according to their participation ratios (see Section S4.5). 

 
Figure S 14: (a) First Brillouin zone of pentacene polymorph I (5A) with the high-symmetry points, 

between which the phonon band structure in panel (b) is shown. The reciprocal, bi, and real-space 

lattice vectors, ai, are displayed as red and purple arrows, respectively. The bands are coloured 

according to their participation ratios (see Section S4.5). 
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Figure S 15: (a) First Brillouin zone of the reordered lattice (see Section S3) of pentacene 

polymorph II (5A-II) with the high-symmetry points, between which the phonon band structure in 

panel (b) is shown. The reciprocal, bi, and real-space lattice vectors, ai, are displayed as red and 

purple arrows, respectively. The bands are coloured according to their participation ratios (see 

Section S4.5). 

 

S7. Details on the classical models to describe the evolution of -frequencies 

 

S7.1 Intramolecular bending model 

The classical analogue used to model the intramolecular bending frequencies in the aces is the 

bending bar. For a bar of length L, with mass density , cross section area A, flexural rigidity EI 

(containing Young’s modulus, E, and the second moment of area of the cross section, I), the 

(angular) eigenfrequencies, m, of the transverse vibrations of the bar (labelled by the index m), 

are given by the following equation:23  

𝜔𝑚 =
𝜇𝑚
2

𝐿2
√
𝐸𝐼

𝜌𝐴
  (S6) 

In addition to all these geometric and material-specific quantities, a dimensionless variable, m, 

enters Equation (S6), which is only determined by the boundary conditions of the bar, i.e., the kind 

and position of the supports.23 As most of the geometric and material-specific parameters in 

Equation (S6) would not allow a reasonable determination for the given (non-continuous) case of 



 26 

bending molecules, the model is used to estimate frequency ratios rather than absolute frequencies. 

Here, we assume that A, , and EI stay constant between the system and that the only parameter 

that varies is the “beam length”, L. The remaining problem is to define the beam length for the 

bending molecules. In the simplest case of a bending bar, the transverse bending eigenmodes show 

nodes (i.e., positions of no transverse displacement) at the positions of the supports. That means, 

that a reasonable way to define the beam length in the molecules is to find those nodes and define 

the lengths between them as the “effective length”, Leff. An analysis of the bending vibrations (at 

) reveals that this effective length approximately obeys the following empirically found equation: 

𝐿𝑒𝑓𝑓,𝑛 = 𝑑𝑟𝑖𝑛𝑔 ⋅ [𝑛 − (𝑛 − 1)𝑠] (S7) 

Here, dring is the (short) diameter of the hexagonal ring of benzene and n is an integer ranging 

from 1 (benzene, 1A) to 5 (pentacene, 5A) and, thus, counts the number of rings in the molecule. 

Additionally, a parameter, s, enters the above equation to account for the observation that the ratio 

of Leff and the total molecular length decreases for longer acenes. For the bending modes, s=0.5 is 

used, whereas for the intramolecular in-plane bending modes (for which the same model based on 

a bending beam is employed), s=0.7 was found suitable to approximate Leff in the atomic 

displacement patters and, thus, the associated frequencies. 

Once Leff is known, the following equation can be used to estimate the frequency ratios relative 

to a reference system: 

𝜔𝑛
𝜔𝑟𝑒𝑓

=
𝐿𝑒𝑓𝑓,𝑟𝑒𝑓
2

𝐿𝑒𝑓𝑓,𝑛
2  (S8) 

Here, we used naphthalene (2A) as a reference for the mode, as this molecule is the simplest 

case which has a defined long molecular axis and shows no phonon hybridisation effects. 

 

S7.2 Intramolecular torsion model 

Similarly to the case of bending molecules introduced above, we employed a simple model of a 

torsional oscillator – with a torsional stiffness, ktor, and the torsional moment of inertia, Itor – to 

describe the frequency evolution as a function of the number of rings, n: 

𝜔𝑛
2 =

𝑘𝑡𝑜𝑟,𝑛 
𝐼𝑡𝑜𝑟,𝑛

⇒
𝜔𝑛
2

𝜔𝑟𝑒𝑓
2 =

𝑘𝑡𝑜𝑟,𝑛
𝑘𝑡𝑜𝑟,𝑟𝑒𝑓

𝐼𝑡𝑜𝑟,𝑟𝑒𝑓

𝐼𝑡𝑜𝑟,𝑛
  (S9) 

As a next step, the two ingredients, ktot and Itor, should be discussed. To this end, it is vital to 

understand how the intramolecular torsional mode distort the molecular geometries. In those 



 27 

modes, one can clearly observe a nodal line, which corresponds to the y-axis as shown in Figure S 

16. All atoms above the y-axis (i.e. all atoms with z > 0) undergo torsional motion around the z-

axis in one direction as one largely rigid unit, while all the atoms below the y-axis (z < 0) undergo 

a torsion in the other direction (as one largely rigid unit).  

 
Figure S 16: Definition of the molecular Cartesian coordinate system (x,y,z), with respect to which 

the molecular moments of inertia were calculated. The distance between C and C, rCC, and between 

C and H atoms, rCH, are indicated by red double arrows. For the numeric calculations, these 

distances were set to constant values (1.396933 Å and 1.089885 Å), obtained from the average 

nearest-neighbour C-C and C-H distances in the crystal structure of monoclinic benzene (1A). 

Atomic colour coding: C…grey, H…white. 

 

Depending on whether the number of rings, n, of the molecule is even (n mod 2 = 0) or odd (n 

mod 2 = 1), different atoms must be excluded from the total moment of inertia around the z-axis, 

zz (this quantity is introduced in Equation (S13) in Section S7.3): for even n, two central carbon 

atoms do not contribute to Itor because they lie on the nodal plane and do not move, while for odd 

n, two carbons and to hydrogens must be excluded (see Figure S 16). For the sake of completeness, 

the analytic expression for Itor used for the acenes with n rings is given in Equation (S10). 

2 𝐼𝑡𝑜𝑟,𝑛 = Θ𝑧𝑧,𝑛 − (𝑛 mod 2 − 1) ⋅ 2𝑚𝐶 (
𝑟𝐶𝐶
2
)
2

− (𝑛 mod 2 ) ⋅  2(𝑚𝐶𝑟𝐶𝐶
2 +𝑚𝐻(𝑟𝐶𝐶 + 𝑟𝐶𝐻)

2) (S10) 

In addition to the total (rotational) moment of inertia around the z-axis, zz (as introduced in 

Equation (S13) below), Itor depends on the atomic masses of the C and H atoms, mC and mH, and 
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the (average) nearest-neighbour C-C and C-H distance, rCC and rCH. Note that the numeric values 

(1.396933 Å and 1.089885 Å) for these distances were obtained from the average nearest-

neighbour distances in benzene (1A) and were kept constant for all estimations of Itor for the sake 

of simplicity. 

Besides this odd-even effect in the calculation of Itor, also the torsional stiffness, ktor, is supposed 

to depend on the precise location of the nodal plane. Since the atoms with y > 0 and those with y 

< 0 undergo torsions as largely rigid units, the strongest local bond distortions are observed close 

to the nodal plane (y = 0). Therefore, we consider the local bond geometries in the proximity of 

the nodal plane as the restoring “springs” of this vibration.  In case of odd-ringed acenes, this 

directly affects four C-C bonds, which are distorted from the energetically preferred planar 

(aromatic) arrangement. We consider this number of distorted bonds in the torsional stiffness as 

four times an arbitrary torsional reference stiffness, 0
tor. In case of even-ringed acenes, also the 

C-C bond in the centre of the molecule finds itself in an environment of non-planar bonds. Since 

this bond is “doubly unsatisfied”, as the bonding environment on both sides is changing in opposite 

directions, this bond is counted twice such that ktor equals six times 0
tor in this case. To sum up, 

the torsional stiffness, ktor, is modelled to depend on the number of rings, n, in the following way: 

𝑘𝑡𝑜𝑟,𝑛 = 2𝛾𝑡𝑜𝑟
0 ⋅ (3 − 𝑛 mod 2) (S11) 

 

S7.3 Rotational rigid intramolecular modes model 

In analogy to the analysis of the translational rigid intermolecular modes (TRIMMs) presented 

in the main text, a similar analysis was applied also to the rotational rigid intermolecular modes 

(RRIMMs). For a rotational vibration, a suitable measure for the inertia of the oscillator is the 

appropriate moment of inertia, ii, which must be calculated for rotations around all axes 

separately (see below). If this quantity is known, the effective rotational molecular stiffness, Krot, 

can subsequently be calculated from the (angular) frequencies: 

𝜔𝑛,𝑖
2 =

𝐾𝑟𝑜𝑡,𝑛
Θ𝑖𝑖

 (S12) 

In order to keep the model as simple as possible, the moments of inertia were calculated for 

rotations around the long and short molecular axis as well as around the axis normal through the 

-planes of the molecule (corresponding to the z-, -y, and x-axes as shown in Figure S 16, 
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respectively). For the sake of completeness, the analytic expressions for those three moments of 

inertia as a function of the number of rings, n, are given below: 

Θ𝑧𝑧,𝑛 = [𝑚𝐶

𝑟𝐶𝐶
2

2
⋅ (5𝑛 + 1) + 𝑚𝐻(𝑟𝐶𝐶 + 𝑟𝐶𝐻)

2 ⋅ (2𝑛 + 1)] (S13) 

Θ𝑦𝑦,𝑛 =

[
 
 
 

3𝑚𝐶𝑟𝐶𝐶
2  ∑𝑘2

𝑛

𝑘=1

  +    3𝑚𝐻

(

 (𝑛𝑟𝐶𝐶 + 𝑟𝐶𝐻)
2 + 𝑟𝐶𝐶

2  ∑ (2𝑘 − 1 + 𝑛 mod 2)2

𝑛−𝑛 mod 2
2

𝑘=1−𝑛 mod 2

 

)

 

]
 
 
 

 (S14) 

Θ𝑥𝑥,𝑛 =

{
 
 
 
 

 
 
 
 
6(𝑚𝐶𝑟𝐶𝐶

2 +𝑚𝐻(𝑟𝐶𝐶 + 𝑟𝐶𝐻)
2)                                           for 𝑛 = 1

(
41

2
𝑚𝐶𝑟𝐶𝐶

2 + 2𝑚𝐻(10𝑟𝐶𝐶
2 + 11𝑟𝐶𝐶𝑟𝐶𝐻 + 4𝑟𝐶𝐻

2 ))        for 𝑛 = 2

(50 𝑚𝐶𝑟𝐶𝐶
2 + 2𝑚𝐻(23𝑟𝐶𝐶

2 + 16𝑟𝐶𝐶𝑟𝐶𝐻 + 5𝑟𝐶𝐻
2 ))         for 𝑛 = 3

(
201

2
𝑚𝐶𝑟𝐶𝐶

2 +𝑚𝐻(87𝑟𝐶𝐶
2 + 42𝑟𝐶𝐶𝑟𝐶𝐻 + 12𝑟𝐶𝐻

2 ))     for 𝑛 = 4

(178 𝑚𝐶𝑟𝐶𝐶
2 + 2𝑚𝐻(73𝑟𝐶𝐶

2 + 26𝑟𝐶𝐶𝑟𝐶𝐻 + 7𝑟𝐶𝐻
2 ))      for 𝑛 = 5

 (S15) 

 

As already discussed in the main text, this calculation of the moments of inertia is somewhat 

problematic as the axes around which the rotations are observed do not always perfectly agree with 

the symmetry axes of the molecules, for which the expressions in Equation (S13) to (S15) hold. 

Nevertheless, using the numeric values obtained from the above equations still allows to draw 

several conclusions when analysing the resulting effective rotational force constants as a function 

of the associated moments of inertia. This analysis is shown in Figure S 17. Especially for the 

RRIMMs corresponding to rotations around the long molecular axes (see Figure S 17(a)), the data 

points lie quite nicely on fitted linear functions (through the origin). This is in agreement with the 

observation discussed in the main text that the frequencies of those kind of in-phase and antiphase 

RRIMMs are relatively independent of the molecule length. Only benzene shows a notable 

deviation from this trend in the in-phase RRIMM, suggesting lower rotational force constants than 

the longer acenes. 
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Figure S 17: Calculated effective intermolecular mode force constants for the three RIMMs (a) 

around the long molecular axes, (b) around the short molecular axes, and (c) around the axes 

normal to the -planes in the studied molecular crystals as a function of the associated molecular 

moments of inertia. The dashed lines correspond to fitted linear functions through the origin for 

the RRIMMs with the exception of the in-phase RRIMM in panel (b), for which also the offset to 

the origin was fitted.  
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The evolution of the rotational force constants for RRIMMs corresponding (roughly) to rotations 

around the short molecular axes (see Figure S 17(b)) show much more unclear trends. Although 

for the antiphase RRIMM, a linear function through the origin seems to be suitable to describe the 

evolution (with antracene and naphthalene lying distinctly below the trend), for the in-phase 

RRIMM, a first-order polynomial (i.e., slope and offset) were fitted. In this case, a clear trend of 

decreasing frequency with the molecule length is observed (by a factor of ~1.6 in total from 1A to 

5A). Therefore, the rotational force constants are not supposed to depend linearly on the moments 

of inertia (which would result in a constant frequency). Instead, due to the positive offset, b0, and 

the slope, b1, the frequencies are expected to decrease with √𝑏1 + 𝑏0/𝛩𝑦𝑦 . However, direct 

connections to the molecular length are hampered by the fact that in contrast to zz, yy depends 

on the number of rings per molecule in a non-linear way. 

Finally, for the last type of RRIMMs, again a more or less linear relationship between xx and 

the calculated rotational force constant can be observed (suggesting roughly constant frequencies); 

the deviations from the linear trends are, however, larger than in all other cases discussed so far. 

Still, it seems that the increase in the magnitude of the effective rotational force constants can keep 

up with the (superlinear) increase in the moment of inertia (approximately) associated with this 

kind of motion. 
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S8. Sound velocities (long-wavelength limit) 

For the spatial distributions of sound velocities, the group velocities of the acoustic bands were 

calculated for a small sphere (with radius equalling 1 % of the length of the shortest reciprocal 

lattice vector in each system to guarantee comparability; see Table S 14) on a 360×180 mesh of 

azimuthal, , and polar angles, , respectively. For the sake of completeness, the average, 

maximum, minimum and standard deviation of the TA(1,2) and LA sound velocities on these 

reciprocal-space spheres are listed in Table S 14, and the deviations from the respective averages 

are plotted as projections onto unit spheres for all studied systems in the following. 

Note that, since the sound velocities , were sampled at meshes in spherical coordinates, average 

values, 〈𝑣𝑝〉,  and standard deviations, std(𝑣𝑝),were calculated in the following way (with p = 

TA1/TA2/LA) 

〈𝑣𝑝〉 =
1

4𝜋
∫ 𝑑𝜙∫ 𝑑𝜃  𝑣𝑝(𝜃, 𝜙) sin(𝜃)

𝜋

0

2𝜋

0

  (S16) 

std(𝑣𝑝) =  √〈𝑣𝑝2〉 − 〈𝑣𝑝〉2  (S17) 

 

 

Table S 14: q-radius, q, of the spheres in reciprocal space, on the surface of which the sound 

velocities were calculated for the studied systems. Additionally, the average (Av.), minimum 

(Min.), maximum (Max.) and the standard deviation (Std.) of the respective group velocity (vector 

norms) on those spheres are listed. 

OSC 
q /  

10-3 Å-1 

TA1 mode / kms-1  TA2 mode / kms-1 LA mode / kms-1 

Av.  Min. Max. Std. Av.  Min. Max. Std. Av.  Min. Max. Std. 

1A-o 6.76 1.96 0.78 3.64 0.46 2.39 1.77 3.73 0.48 3.64 2.94 3.98 0.26 

1A 8.67 1.81 1.45 2.64 0.15 2.36 1.81 3.27 0.37 3.54 2.85 3.86 0.21 

2A 8.82 1.92 1.39 2.54 0.25 2.35 1.74 2.99 0.22 3.63 2.90 4.05 0.21 

3A 6.94 1.76 1.17 2.57 0.32 2.31 1.42 2.93 0.28 3.56 2.95 4.16 0.30 

4A 5.21 2.19 0.77 3.73 0.67 2.98 1.29 4.09 0.53 4.07 2.88 4.99 0.58 

5A 4.42 2.47 0.64 4.55 0.79 3.17 1.22 4.63 0.65 4.30 2.77 5.33 0.71 

5A-II 4.51 2.38 0.70 4.41 0.66 3.12 1.53 4.54 0.63 4.32 3.02 5.32 0.67 

 



 33 

 
Figure S 18: Differences in the first (largely) transverse acoustic (TA1) sound velocities and the 

corresponding mean values (see Table S 14) for all studied organic semiconductor crystals. The 

lattice vectors, a1, a2, and a3, are shown as black arrows. Additionally, the long molecular axes 

(blue arrows), the short molecular axes (red arrows) and the normal vectors to the -planes (green 

arrows) of the two molecules per unit cell are indicated. The three arrows with a slightly darker 

shade belong to one molecule, while the lighter ones belong to the other. As 1A-o contains four 

molecules per unit cell, no additional molecular directions are shown to avoid perceptual 

confusion. 
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Figure S 19: Differences in the second (largely) transverse acoustic (TA2) sound velocities and the 

corresponding mean values (see Table S 14) for all studied organic semiconductor crystals. The 

lattice vectors, a1, a2, and a3, are shown as black arrows. Additionally, the long molecular axes 

(blue arrows), the short molecular axes (red arrows) and the normal vectors to the -planes (green 

arrows) of the two molecules per unit cell are indicated. The three arrows with a slightly darker 

shade belong to one molecule, while the lighter ones belong to the other. As 1A-o contains four 

molecules per unit cell, no additional molecular directions are shown to avoid perceptual 

confusion. 
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Figure S 20: Differences in the (largely) longitudinal acoustic (LA) sound velocities and the 

corresponding mean values (see Table S 14) for all studied organic semiconductor crystals. The 

lattice vectors, a1, a2, and a3, are shown as black arrows. Additionally, the long molecular axes 

(blue arrows), the short molecular axes (red arrows) and the normal vectors to the -planes (green 

arrows) of the two molecules per unit cell are indicated. The three arrows with a slightly darker 

shade belong to one molecule, while the lighter ones belong to the other. As 1A-o contains four 

molecules per unit cell, no additional molecular directions are shown to avoid perceptual 

confusion. 
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S9. Effects of Polymorphism 

Here, the most pronounced differences in the phonon-derived quantities introduced above and 

in the main text will be briefly discussed comparing monoclinic (1A) and orthorhombic benzene 

(1A-o) as well as the pentacene polymorphs I (5A) and II (5A-II). 

 

S9.1 Orthorhombic benzene 

As the orthorhombic phase of benzene (1A-o) contains twice the number of molecules per unit 

cell, it is impossible to assign the inter- and intramolecular modes on a one-to-one base as it was 

done for the remaining systems. However, one still can find interesting differences in many 

phonon-derived quantities discussed above and in the main text. 

Regarding the phonon band structure (see Figure S 10), in orthorhombic benzene, the acoustic 

bands emerging from the centre of the first Brillouin zone, , show almost perfectly linear 

dispersions over a comparably large frequency range like for the other systems. Moreover, their 

band widths are relatively similar for different directions in reciprocal space (amounting to ~1-2 

THz). Only the band widths in the Z direction show a slightly reduced dispersion: this direction 

corresponds to the lattice vector a3, along which the molecules pack less densely than in the other 

systems, reducing the effective stiffness of the system in that direction. With the aid of the PRs 

(i.e., by following the nearly linear band fragments with particularly high PRs), one can, however, 

observe that the actual band widths of the acoustic bands are even larger than suspected, since the 

bands frequently undergo avoided crossings (phonon hybridisations) involving other 

intermolecular bands belonging to the same irreducible symmetry representation (IRREP). This 

can, for example, be seen most clearly for the acoustic bands along X and Z in Figure S 10(b): 

at the first occasion at which they approach an optical band, phonon hybridisation occurs causing 

a small band gap to open (at ~1.6 THz and ~1.2 THz for the LA band). Depending on the 

hybridisation strength, this gap is smaller or larger, but in general, this phenomenon can be 

considered unfavourable for phonon transport24–26 because of the (partial) loss of more strongly 

dispersing bands. 

The a priori probability for avoided crossings is significantly reduced in the orthorhombic 

polymorph as the system exerts a space group with much more IRREPs.27 Thus, it is less likely 

that two bands with the same symmetry meet, which is the prerequisite for phonon hybridisation. 

In order to emphasise this aspect, Figure S 21 shows the phonon band structure of 1A and 1A-o 
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along one exemplary path with the bands coloured according to their assigned IRREPs. It can be 

seen that the LA band in 1A meets two bands with the same IRREP along its path and, therefore, 

experiences two avoided crossings. Conversely, in 1A-o, the LA band only meets one band with 

the same IRREP along its way to Z so that only one avoided crossing is observed. Also the optical 

modes ≤ 4 THz (along this path) undergo drastically fewer avoided crossings although the density 

of bands is notably increased in this region in 1A-o. 

 
Figure S 21: Phonon band structure of monoclinic (1A) and orthorhombic (1A-o) benzene along 

the Z path coloured according to the irreducible representations (IRREPs) of the symmetries of 

the eigenvectors. In the case of 1A, the group of the wave vector along this path is CS (in 

Schoenflies notation) with two IRREPs (A’, A’’), while it is C2v (in Schoenflies notation) for 1A-o 

with four IRREPs (A1, A2, B1, B2). 

 

Besides the reduced probability of avoided crossings, the band structure of the orthorhombic 

polymorph with four molecules per unit cell shows more intermolecular modes (24=6×Z), which 

are, however, still well-separated from the higher intramolecular ones. Interestingly (see also the 

low-frequency DOS in Figure S 6), the additional intermolecular modes accumulate especially in 

the range ~2 – 3 THz, resulting in region of notably enhanced DOS compared to 1A. For higher, 

intramolecular modes, the phonon DOS of 1A and 1A-o look essentially identical. 
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Since these additional bands in 1A-o compared to 1A are predominantly rather flat, it is not 

surprising that a direct comparison of the densities of states per group velocity (DOGVs) 

considering only the low-frequency modes reveals an increased DOGV at lower group velocities 

in 1A-o (even when the DOGV is normalised by 3N in order to account for the different number 

of bands in both systems). However, also the DOGV at around 1.6-1.8 kms-1 in 1A-o is somewhat 

increased showing that there are also additional stronger-dispersing bands in 1A-o. These are likely 

to be the bands at ~4 THz at , which correspond to RRIMMs with different phase shifts between 

neighbouring molecules.  

Regarding the sound velocities, the average values of the different modes in 1A-o are 

consistently slightly higher than in 1A (and even somewhat higher than in 2A), but, in general, 

follow the same trends as 1A. Interestingly, the standard deviations for the sound velocities of the 

TA bands are significantly larger than in any of the monoclinic systems (1A, 2A, and 3A). This 

can also be seen clearly in the distributions of sound velocities in Figure S 18 and Figure S 19: the 

regions around the lattice vectors a1 and a2 show significantly higher group velocities, while 

exactly in the a1- and a2-directions the values are rather moderate. Interestingly, the LA sound 

velocity is largest at about 45° between a1 and a2. Looking at the crystal structure in the (a1 + a2)-

direction, one notices that half of the molecules lie (roughly) in the same plane as the (a1 + a2)-

vector (and in planes parallel to that), while the other half lies in planes approximately orthogonal 

to the former. This perfect face-to-edge herringbone packing of the molecules (meeting at nearly 

90°) in this system seems to be especially suitable to allow a fast propagation of compression 

waves in this direction. 

 

S9.2 Pentacene polymorph II 

The direct comparison is much easier for the two considered polymorphs of pentacene. As the 

polymorph II (5A-II) shows certain differences in the packing arrangement (see Section S2), 

especially the intermolecular low-frequency phonons are expected to show some differences to the 

polymorph I (5A). As far as low-frequency intramolecular bands are concerned, Figure S 22 shows 

that their frequencies stay essentially the same. The largest for these modes is on the order of 0.3 

THz (~4.05 THz in 5A and 3.75 THz in 5A-II) and is observed for the in-phase second-order 

bending modes, while all the differences for the remaining modes are smaller by at least a factor 

of ~3. This is most probably a result of the fact that in this mode in 5A, one of the two molecules 
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shows a strong rotational character in addition to the second-order bending due to hybridisation 

with a closely lying long axis RRIMM. 

 
Figure S 22: Evolution of selected intramolecular and intermolecular frequencies at , 

respectively, as a function of the molecular length from benzene (1A) to pentacene (5A) including 

the corresponding modes for pentacene polymorph II (5A-II). The frequencies are displayed as 

short horizontal bars, with the connecting lines serving as guides to the eye. In both panels, the 

frequencies belonging to the respective interesting regime (intra- or intermolecular) are shown in 

colour, while the other regime is shown as grey lines in the background. The narrow frequency 

interval shown in (e) is emphasised by the horizontal dashed line in (d). The type of the 

translational rigid intermolecular modes (TRIMMs) and rotational rigid intermolecular modes 

(RRIMs) are explicitly labelled by the lattice vectors ai on the left side, along which the 

translational motion occurs and by the molecular axes (long axis, short axis and the axis normal 

to both) on the right side, around which the rotation (roughly) is observed 

 

As expected, the changes of the intermolecular modes’ frequencies are notably larger, where 

they amount to up to 0.83 THz for the difference in antiphase RRIMM around the -plane normal. 

Also the in-phase RRIMM around the short axis experiences a significant drop in frequency, which 

is so large in magnitude (~-0.67 THz) that it comes to lie below the a3/long TRIMM. We attribute 

this to the much larger geometric offset between two layers of molecule, short, in 5A-II (see Table 

S 3). As a result, the molecules have more space to rotate around the short axis and, thus, the 

interaction strength (effective force constant) must be smaller, resulting in a lower frequency. 

 Interestingly, the TRIMMs are much less by the different polymorphic packing than the 

RRIMMs: the two higher ones (a1/normal and a2/short) essentially keep their frequency, while the 

frequency of the a3/long TRIMM increases by ~0.16 THz. Analysing the animations, this seems 
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to be the consequence of the increased bending character that the a3/long TRIMM in 5A 

additionally exhibits compared to the equivalent TRIMM in 5A-II. 

Regarding the dispersion of the bands in both polymorphs, the low-frequency band structures 

(see Figure S 14 and Figure S 15) show many similarities. Even the band widths are typically 

nearly identical. One of the most pronounced differences apart from the slightly changed order of 

low-frequency intermolecular bands is the increased band width of the TA modes in 5A-II in X 

and Y compared to 5A. The larger band widths can also be seen in the low-frequency zoom of 

the DOS in Figure S 6: here the typical quadratic (Debye-like) onset of the DOS (as a result of the 

linear dispersion of the acoustic bands) increases slightly more gradually in 5A-II. Apart from that, 

hardly any (significant) differences in the low-frequency DOS can be perceived, let alone in the 

higher intramolecular region > 7 THz. As a result, thermodynamic properties at elevated 

temperatures, for which also intramolecular modes contribute to a significant extent, are expected 

to exhibit nearly no differences between the two polymorphs (such as the heat capacities discussed 

in Section S10). 

Also regarding the sound velocities, 5A and 5A-II are very similar. The average LA and TA2 

sound velocities are essentially identical with even the standard deviations being nearly the same. 

A more pronounced difference is observed in the TA1 sound velocities: both the average TA1 sound 

velocity and the associated standard deviation are slightly higher in 5A than in 5A-II, although the 

distributions of group velocity differences look practically identical for 5A and 5A-II (see Figure 

S 18 to Figure S 20). 

Concerning the group velocities of the optical modes, the maximum of the low-frequency 

DOGV is slightly shifted to lower values, implying that among the bands with frequencies ≤ 7 

THz, the group velocities are somewhat reduced in 5A-II compared to 5A. 
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S10. Molar heat capacities 

It turns out that at 300 K, all the studied systems display nearly the same value of the normalised 

heat capacity, CV/(3NkB), (~0.3324) as discussed in the main text. Based on this observation, one 

can crudely estimate the molar heat capacity, which is typically the one measured in experiments, 

in the following way: 

𝑐𝑉
𝑚(300 𝐾)= (

𝐶𝑉
3𝑁𝑘𝐵

)|
300 𝐾

 
3𝑁
𝑍
 𝑘𝐵𝑁𝐴 = 0.3324 

3𝑁
𝑍
 𝑘𝐵𝑁𝐴 ≈

𝑁
𝑍
⋅𝑅  (S18) 

Here, N (Z) is the number of atoms (molecules) per unit cell and kB, NA, and R are the Boltzmann 

constant, the Avogadro constant, and the universal gas constant, respectively. This estimation 

shows that as a result from all systems showing a very similar value of CV/(3NkB) at 300 K, the 

molar heat capacity at room temperature is solely a function of the number of atoms per molecule, 

N/Z. In fact, the proposed estimation above relying only on this single variable provides a more 

than satisfactory agreement with experimental heat capacity data, although those were measured 

at constant pressure rather than at constant volume (Cp instead of CV). The experimental values of 

the molar heat capacity (at constant pressure) for benzene28,29, naphthalene29,30, anthracene29,31, 

tetracene32, and pentacene32 are shown as open circles in  Figure S 23. Note that the experimental 

values are always slightly underestimated. One reason for this is that, in general, the relation Cp > 

CV holds at finite temperatures, since CV implicitly neglects the influence of thermal expansion.33 

In addition to the aspects already discussed in the main text it can be seen that polymorphism 

does not seem to have a notable effect on the heat capacity at constant volume. The intramolecular 

modes, which increasingly gain importance at higher temperatures, are too similar so that they 

obscure the pronounced but comparably few differences in the low-frequency region. Only at very 

low temperatures (see Figure S 23(c)), one can see that CV/(3NkB) is slightly smaller for 1A-o than 

for 1A. This observation emphasises the findings discussed in Section S9.1: the weight of the low-

frequency (intermolecular) DOS is slightly shifted to higher frequencies. Therefore, somewhat 

higher temperatures are needed to thermally activate those phonons’ contribution to the heat 

capacity.  

Conversely, the (normalised) heat capacity of the 5A and 5A-II does not even show significant 

differences in this low-temperature region. Obviously, the few shifts in frequencies and the few 

differences in band dispersion are too minor to achieve notable variations in CV/(3NkB). 
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Figure S 23: (a) Molar heat capacity and (b) heat capacity per unit cell normalised with the 

classical Dulong-Petit limit (3NkB) as a function of temperature for the studied organic 

semiconductor crystals. The vertical dashed lines in (b) indicate the temperature of 300 K, while 

the horizontal one emphasises the common value in the normalised heat capacities of ~0.3324.  

The open circles in (a) indicate the experimentally determined values for the molar constant-

pressure heat capacity for benzene28,29, naphthalene29,30, anthracene29,31, tetracene32, and 

pentacene32in the corresponding colours. (c) Zoom into the region indicated by the dashed box. 

Note that the symbols on top of the lines do not correspond to the actually calculated data points 

(those lie much more densely), but rather serve as guides to the eye. 
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S11. Comparison of low-frequency intramolecular between the crystals and the isolated 

molecules 

Interesting insight into the non-covalent interactions due to the molecular packing in the studied 

organic crystals can be obtained by comparing the frequencies of eigenmodes in the isolated 

molecules to the equivalent -phonons in the crystalline systems. The molecular frequencies in 

the isolated molecules were calculated using the Gaussian 16 package34 (Rev. A.03) employing 

the same functional and van der Waals correction as used in the periodic calculations (see Section 

S4.1) with a 6-311++G(d,p) basis set. These calculations are publicly available in the same dataset1 

as the periodic calculations in the NOMAD database.  

Figure S 24 shows that all frequencies of the molecular vibrations experience a shift to higher 

frequencies when the molecule packs in the crystals. This is to be expected as the presence of the 

other molecules in the crystalline environment additionally exerts intermolecular, non-covalent 

interactions on the molecule such that the effective stiffness increases. Notably, the shifts to higher 

frequency in the crystals are more pronounced for longer the molecules: the average frequency 

shift in pentacene equals 1.30 THz (5A) and 1.23 THz (5A-II), decreases to 1.02 THz for tetracene, 

0.80 THz for anthracene, 0.44 THz for naphthalene, and 0.19 THz for benzene. This reflects the 

stronger intermolecular interactions present in the crystals built of the longer acenes. 

 
Figure S 24: Comparison of the frequencies selected intramolecular modes between the isolated 

molecular systems (“mol.”) and the crystalline systems (“cryst.”). In the case of pentacene, also 

the frequencies in the polymorph 5A-II (“cryst.-II”) are shown. Note that every panel covers the 

same absolute frequency range of 8 THz. 
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