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S1 Supplementary Results: HOMO-LUMO Overlap

(@) A kigleV? k% /eV? FWHM / eV
Theo.  Expt.
0.712 0.720 0.023 0.020 0.16 0.14[1]
0.709 0.727 0.027 0.024 0.24 -
0.653 0.663 0.024 0.022 0.18 -
0.746 0.706 0.030 0.028 0.16 -
0.657 0.680 0.028 0.026 0.17 -
0.646 0.674 0.026 0.024 0.20 -
0.654 0.667 0.027 0.027 0.18 -
0.656 0.646 0.029 0.028 0.23 -
0.637 0.631 0.030 0.030 0.22 -
0.701 0.690 0.019 0.017 0.19 -
0.648 0.621 0.015 0.013 0.14 -
0.703 0.661 0.011 0.011 0.17 -
0.605 0.598 0.022 0.046 0.16 0.19[2]
0.611 0.611 0.022 0.030 0.17 0.18[3]
0.586 0.586 0.021 0.041 0.21 0.20[3]
0.642 0.634 0.006 0.006 0.16 -
0.622 0.613 0.019 0.049 0.22 -
0.541 0.552 0.020 0.038 0.30 -
0.293 0.293 0.079 0.088 - 0.38 [4]

0.492 0.492  0.051 0.121 —  0.30[4]
0.217 0217  0.089 0.092 —  042[4]
0.219 0.219  0.089 0.103 —  044[4]

0.226 0.226 0.090 0.102 0.56 0.48 [4]
0.108 0.108 0.062 0.090 0.44 0.39[95]
0.888 0.891 0.058 0.048 0.30 0.35][6]
0.900 0.680 0.029 0.025 0.28 0.24[7]
0.890 0.881 0.041 0.032 0.20 0.29[8]

NN DMNMDDMMDDMDDMDDMODDN = e ek ook e ek ok owd owd
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Table S1: O calculated at the ground state geometry. x% ¢ x%, All other energies corresponds to emis-
sion, S; geometry.



S2 Supplementary Results: FWHM vs «? Correlations
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Figure S1: The correlation between emission FWHM and «? analysed using the S; gradient at the
ground state geometry. The dashed lined shows a linear fit to the data, excluding the data points based

upon experimental FWHM. The black circles and dashed line corresponds to the data in Figure 6a. The
green and red isolates the truxene and MR emitters, respectively.
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Figure S2: The correlation between emission FWHM of Franck-Condon only spectra and 2 analysed
using the S; gradient at the ground state geometry. The dashed lined shows a linear fit to the data, ex-
cluding the data points based upon experimental FWHM. The black circles and dashed line corresponds
to the data in Figure 6a. The green and red isolates the truxene and MR emitters, respectively.



S3 Supplementary Results: Emission Spectra
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Figure S3: The computed emission spectrum of 2.
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Figure S4: The computed emission spectrum of 3.
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Figure S5: The computed emission spectrum of 4.
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Figure S6: The computed emission spectrum of 5.
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Figure S7: The computed emission spectrum of 6.
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Figure S8: The computed emission spectrum of 7.
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Figure S9: The computed emission spectrum of 8.
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Figure S10: The computed emission spectrum of 9.
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Figure S11: The computed emission spectrum of 10.
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Figure S12: The computed emission spectrum of 11.
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Figure S13: The computed emission spectrum of 12.
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Figure S14: The computed emission spectrum of 16.
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Figure S15: The computed emission spectrum of 17.
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Figure S16: The computed emission spectrum of 18.
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Figure S17: The computed emission spectrum of 23.
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Figure S18: The computed emission spectrum of 24.
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Figure S19: The computed emission spectrum of 25.
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Figure S20: The computed emission spectrum of 26.
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Figure S21: The computed emission spectrum of 27.
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S4 Supplementary Results: Density Differences

Figure S22: Left: The density difference of associated with the first singlet excited state of 1. Right:
Dominant normal mode responsible for the excited state structural change associated with 1.

Figure S23: Left: The density difference of associated with the first singlet excited state of 2. Right:
Dominant normal mode responsible for the excited state structural change associated with 2.
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Figure S24: Left: The density difference of associated with the first singlet excited state of 3. Right:
Dominant normal mode responsible for the excited state structural change associated with 3.

Figure S25: Left: The density difference of associated with the first singlet excited state of 4. Right:
Dominant normal mode responsible for the excited state structural change associated with 4.

Figure S26: Left: The density difference of associated with the first singlet excited state of 5. Right:
Dominant normal mode responsible for the excited state structural change associated with 5.
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Figure S27: Left: The density difference of associated with the first singlet excited state of 6. Right:
Dominant normal mode responsible for the excited state structural change associated with 6.

Figure S28: Left: The density difference of associated with the first singlet excited state of 7. Right:
Dominant normal mode responsible for the excited state structural change associated with 7.

Figure S29: Left: The density difference of associated with the first singlet excited state of 8. Right:
Dominant normal mode responsible for the excited state structural change associated with 8.
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Figure S30: Left: The density difference of associated with the first singlet excited state of 9. Right:
Dominant normal mode responsible for the excited state structural change associated with 9.

Figure S31: Left: The density difference of associated with the first singlet excited state of 10. Right:
Dominant normal mode responsible for the excited state structural change associated with 10.

Figure S32: Left: The density difference of associated with the first singlet excited state of 11. Right:
Dominant normal mode responsible for the excited state structural change associated with 11.
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Figure S33: Left: The density difference of associated with the first singlet excited state of 12. Right:
Dominant normal mode responsible for the excited state structural change associated with 12.

Figure S34: Left: The density difference of associated with the first singlet excited state of 13. Right:
Dominant normal mode responsible for the excited state structural change associated with 13.

21



Figure S35: Left: The density difference of associated with the first singlet excited state of 14. Right:
Dominant normal mode responsible for the excited state structural change associated with 14.

Figure S36: Left: The density difference of associated with the first singlet excited state of 15. Right:
Dominant normal mode responsible for the excited state structural change associated with 15.

Figure S37: Left: The density difference of associated with the first singlet excited state of 16. Right:
Dominant normal mode responsible for the excited state structural change associated with 16.
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Figure S38: Left: The density difference of associated with the first singlet excited state of 17. Right:
Dominant normal mode responsible for the excited state structural change associated with 17.

Figure S39: Left: The density difference of associated with the first singlet excited state of 18. Right:
Dominant normal mode responsible for the excited state structural change associated with 18.

Figure S40: Left: The density difference of associated with the first singlet excited state of 19. Right:
Dominant normal mode responsible for the excited state structural change associated with 19.
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Figure S41: Left: The density diffétence of associated with the first singlet excited state of 20. Right:
Dominant normal mode responsible for the excited state structural change associated with 20.

Figure S42: Left: The density diffefence of associated with the first singlet excited state of 21. Right:
Dominant normal mode responsible for the excited state structural change associated with 21.

Figure S43: Left: The density differénce of associated with the first singlet excited state of 22. Right:
Dominant normal mode responsible for the excited state structural change associated with 22.
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Figure S44: Left: The density difference of associated with the first singlet excited state of 23. Right:
Dominant normal mode responsible for the excited state structural change associated with 23.

Figure S45: Left: The density difference of associated with the first singlet excited state of 24. Right:
Dominant normal mode responsible for the excited state structural change associated with 24.

Figure S46: Left: The density difference of associated with the first singlet excited state of 25. Right:
Dominant normal mode responsible for the excited state structural change associated with 25.
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Figure S47: Left: The density difference of associated with the first singlet excited state of 26. Right:
Dominant normal mode responsible for the excited state structural change associated with 26.

Figure S48: Left: The density difference of associated with the first singlet excited state of 27. Right:
Dominant normal mode responsible for the excited state structural change associated with 27.
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