Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting information for:

Improvement of electric insulation in dielectric layered perovskite nickelate films via fluorination

Takuma Nishimura¹, Tsukasa Katayama^{2,3*}, Shishin Mo¹, Akira Chikamatsu¹, Tetsuya Hasegawa¹

¹Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.

²Research Institute for Electronic Science, Hokkaido University, N20W10, Kita, Sapporo 001-0020,

Japan.

³JST-PRESTO, Kawaguchi, Saitama 332-0012, Japan

E-mail: katayama@es.hokudai.ac.jp

Figure S1. Two dimensional XRD $2\theta - \chi$ pattern of the La_{1.5}Sr_{0.5}NiO₄ film.

Figure S2. $2\theta - \omega$ XRD patterns of the precursor and $y \sim 3$ films around the STO *110* and Film *103* diffraction peaks.

Figure S3. (a) Crystal structure of $La_6Sr_2Ni_4X_{16}$ (*X* is anion) where La, Sr, Ni and X atoms are drawn as light green, green, gray and red points. (b,c) Top view images of perovskite layers. The number in Fig. (a-c) shows position number of the anions. (d) Fluorine position dependence of total energy of $La_6Sr_2Ni_4O_{14}F_2$. A-site cation configuration was chosen to arrange the Sr atoms as far apart as possible.

Figure S4. The energy level of the top of the Ni 3*d* orbital in the valence band $(E_{top} - E_F)$ for the 18 types of La_{1.5}Sr_{0.5}NiO_{3.5}F_{0.5} as a function of total energy. Gray and purple triangles, orange squares and green circles represent NiO₆, *apical*- and *equat*-NiO₅F and NiO₄F₂ octahedrons, respectively. The models with NiO₄F₂ octahedra tended to have higher total energy, indicating that fluorine ions are energetically favored to be located at *apical*- or *equat*-NiO₅F. The most stable structure consists of both apical and equatorial configurations. In a structure having only apical configurations, the Ni ions are widely separated, which results in shorter distances between Ni and La/Sr and increases the total energy compared to the structures with both apical and equatorial configurations.

Figure S5. Partial DOS for Ni in NiO₆, *apical*-NiO₅F, and *equat*-NiO₅F, O and F sites in $La_{1.5}Sr_{0.5}NiO_{3.5}F_{0.5}$ (Fig. 4(a)) with (a) U = 4.0 and (b) 8.0 eV.

Figure S6. Out-of-plane $2\theta - \theta$ XRD pattern of the La₂NiO₄ film.

Table S1. The O and F contents (*x* and *y*) in the $La_{1.5}Sr_{0.5}NiO_xF_y$ films as a function of PVDF treatment condition. The annealing time at 300°C was set to 3 min because the film was broken when the film was annealed with PVDF at 300°C for 24 h.

PVDF-treated condition		Chemical composition of $La_{1.5}Sr_{0.5}NiO_xF_y$ films (The x and y values include error of ~10%)	
temperature (°C)	Time	x	Y
150	10 h	3.4±0.4	$0.4{\pm}0.1$
200	7 h	3.2±0.4	$1.0{\pm}0.1$
250	5 h	$1.9{\pm}0.2$	3.2±0.4
300	3 min	2.5±0.3	2.1±0.3