Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Design of efficient color-tunable long persistent luminescence phosphor BaGa₂O₄:Pr³⁺

and its performance enhancement via trap-induced strategy

Xilin Ma^{*a*}, Peng Feng^{*a*}, Yajie Wang^{*a*}, Songsong Ding^{*a*},

Songlu Tian^{*a*}, Yuhua Wang^{*a*,*}

^{*a*} National and Local Joint Engineering Laboratory for Optical Conversion Materials and Technology of National Development and Reform Commission, Department of Materials Science,

Cross-Strait Research and Technology Transfer Center for Optoelectronic Materials & Devices of Lanzhou University and Taiwan Kun Shan University, School of Materials and Energy, Lanzhou University, No. 222, South Tianshui Road,

Lanzhou, Gansu, 730000, P. R. China.

*Corresponding author' email: wyh@lzu.edu.cn

Conditions	PSL decay curves	Thermoluminescence (TL) glow curves		
Pre-treatment	Keep at 400 ^{°C} for 3min in dark room.	Keep at 400 ^{°C} for 3min in dark room.		
Mass of samples	Filling the sample tank(~2g)	0.005g		
Testing temperature	Room temperature (20 ^{°C})	From room temperature to 400° ^C via		
		programed heating (1 ^{°C/s}).		
Irradiation wavelength	254nm	254nm		
Power of UV light	24W	24W		
Irradiation distance	5cm above the samples.	5cm above the samples.		
Pre-irradiation times	180s	180s		
Delay times	55	55		

Table S1 Test conditions of PSL decay curves and thermoluminescence (TL) glow curves

Fig. S1 (a) XRD patterns of BGO: x% Pr³⁺. Inset is the peak shifting between 33°-34° corresponding to (600) crystallography plane. (b) XRD patterns of BGO: 0.6% Pr³⁺, x% Zn²⁺.

Table S2 Cell parameters and refinement results of BGO: 0.6% Pr³⁺ and BGO: 0.6% Pr³⁺, 2.0% Zn²⁺

Formula	BGO: 0.6% Pr ³⁺	BGO: 0.6% Pr ³⁺ , 2.0% Zn ²⁺	
Crystal system	Hexagonal	Hexagonal	
Space group	P63	P6322	
a= b (Å)	18.63(3)	5.34(3)	
c (Å)	8.66(3)	8.81(3)	
α= β(°)	90	90	
γ (°)	120	120	
$\mathbf{R}_{\mathbf{wp}}$	0.1144	0.1333	
Rp	0.0863	0.1084	
χ^2	1.805	1.636	

Fig. S2 (a) SEM images of BGO: 0.6% Pr³⁺. (b) HRTEM image of BGO: 0.6% Pr³⁺. Inset is the morphology under TEM mode. (c) EDX spectrum of BGO: 0.6% Pr³⁺, 2.0% Zn²⁺. Inset is the particle size distribution of BGO: 0.6% Pr³⁺, 2.0% Zn²⁺. (d)-(i) Mapping-scan of BGO: 0.6% Pr³⁺, 2.0% Zn²⁺.

Fig. S3 The decay curves of BGO: x% Pr³⁺ under 254nm excitation.

Fig. S4 Fitted line of $lg(I/x_{Pr}^{3+})$ VS. $lg(x_{Pr}^{3+})$ for $BaGa_2O_4$: x%Pr³⁺ phosphors.

Fig. S5 CIE chromaticity coordination of BGO: x% Pr^{3+} (1): x=0.005, 2): x=0.01, 3): x=0.2, 4): x=0.6)

Samples	PL		LPL	
	CIE x	CIE y	CIE x	CIE y
(1): x=0.005	0.259	0.4689	0.3099	0.354
(2): x=0.01	0.3072	0.4304	0.323	0.3785
(3): x=0.2	0.3547	0.3566	0.4003	0.3468
(4) : x=0.6	0.3738	0.3647	0.425	0.3662

Fig. S6 LPL spectra of BGO: 0.6 % Pr³⁺, 2.0%Zn²⁺. Inset is the fitted duration curve.

Fig. S7 Band structure: (a) BGO host, (c) Single Zn²⁺ doped sample, and density of states: (b) BGO host, (d) Single Zn²⁺ doped sample.

Fig. S8 The DRS spectra of BGO: x% Pr³⁺, y% Zn²⁺ sintered under different atmosphere: (a) Air sintered,
(b) N₂ sintered. The inset shows the Straight-line extrapolation under Kubelka-Munk formula of BGO.

Kubelka-Munk formula and Tauc equation are used to calculate the direct optical band gap of the materials based on the diffuse spectral experimental value ^{1 2}.

$$F_{(R)} = (1-R)^2/2R$$
(1)
[F_{(R)} · hv]ⁿ = α (hv - E_g) (2)

where, R is the relative reflectance of the thick sample determined by the white reference material (BaSO₄), α is the instrument parameter, *n* is the parameter to measure the band gap property of the material (direct band structure, n = 2), E_g refers to the direct optical band gap of the materials, *v* is the frequency; *h* is the Planck constant (6.62618×10⁻³⁴Js), and c is the velocity of light (2.99792×10⁸ms⁻¹).

Reference

- H. Ji, L. Wang, M. S. Molokeev, N. Hirosaki, R. Xie, Z. Huang, Z. Xia, O. M. ten Kate, L. Liu and V. V. Atuchin, *Journal of Materials Chemistry C*, 2016, 4, 6855-6863.
- 2. K. Li, M. Xu, J. Fan, M. Shang, H. Lian and J. Lin, *Journal of Materials Chemistry C*, 2015, **3**, 11618-11628.