## **Supporting information**

## Magnetic Field Assisted Fabrication of Asymmetric Hydrogels for Complex Shape Deformable Actuators

Chen Gong<sup>a,1</sup>, Yanduo Zhai<sup>a,1</sup>, Jinping Zhou<sup>a</sup>, Yixiang Wang<sup>b,\*</sup>, Chunyu Chang<sup>a,\*</sup>

<sup>a</sup> College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, China

<sup>b</sup>Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3 V9, Canada

<sup>1</sup>These authors contribute equally to this work.

\*Corresponding author

Prof. Chunyu Chang; Prof. Yixiang Wang

Email: changcy@whu.edu.cn (C. Chang)

yixiang.wang@mcgill.ca (Y. Wang)

ORCID: 0000-0002-3531-5964 (C. Chang)

0000-0001-8386-7491 (Y. Wang)



Figure S1. Photographs of  $Fe_3O_4$ @TCNC suspension after standing for 24 h (a) and attracting with magnets for 2 min (b).



Figure S2. Magnetic hysteresis loops of  $Fe_3O_4$  nanoparticles,  $Fe_3O_4$ @TCNCs, and TCNCs.



**Figure S3.** FTIR spectra of TCNCs, Fe<sub>3</sub>O<sub>4</sub>@TCNCs, Fe<sub>3</sub>O<sub>4</sub>/TCNC mixture, and Fe<sub>3</sub>O<sub>4</sub> powder.



Figure S4. The SEM image of Fe<sub>3</sub>O<sub>4</sub>@TCNCs composite particles.



Figure S5. Thermal gravimetric curves of Fe<sub>3</sub>O<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub>@TCNCs, TCNCs under the

 $N_2$  atmosphere.



Figure S6. Optical image of the cross-section of asymmetric hydrogel.



Figure S7. XPS spectra of Fe<sub>3</sub>O<sub>4</sub>@TCNC-rich layer and Fe<sub>3</sub>O<sub>4</sub>@TCNC-free layer of

the asymmetric hydrogel.



Figure S8. Raman spectra of Fe<sub>3</sub>O<sub>4</sub>@TCNC-rich region and Fe<sub>3</sub>O<sub>4</sub>@TCNC-free region

of the asymmetric hydrogel.



Figure S9. Nanoindentation curves for the top and bottom surfaces of isotropic hydrogel (a) and asymmetric hydrogel (b).



Figure S10. Tensile stress-strain curve of the hydrogel actuator.



**Figure S11.** Deswelling kinetic curves of Fe<sub>3</sub>O<sub>4</sub>@TCNC-rich and Fe<sub>3</sub>O<sub>4</sub>@TCNC-free hydrogels.



Figure S12. The thickness proportion of Fe<sub>3</sub>O<sub>4</sub>@TCNC-rich layer on the cross-section

of

hydrogels.



**Figure S13.** Swelling kinetic curves of Fe<sub>3</sub>O<sub>4</sub>@TCNC-rich and Fe<sub>3</sub>O<sub>4</sub>@TCNC-free hydrogels.



**Figure S14.** Elastic modulus (G') and loss modulus (G'') of hydrogel as a function of frequency.